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Abstract: Classical plate theory is used to study asymmetric vibration of polar orthotropic annular plates of
quadratically varying thickness in the radial direction and resting on Winkler elastic foundation. Boundary
characteristic orthonormal polynomials are used in Rayleigh-Ritz method. Convergence of the results is tested, and
comparisons are made in particular cases with the results already reported in the existing literature. First ten
frequencies for variation in orthotropy for all possible four combinations when one boundary is free are shown. Three
dimensional mode shapes corresponding to the frequencies are shown.
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1. Introduction

Annular circular plate is the simplest and widely used structural element in various engineering fields. The vibration
of such plates has been the subject of various studies. Leissa [1-7] summarized the information in his well-known
monograph and six comprehensive review articles. For the orthotropic plates, except for the few cases, no closed form
solution exits, and researchers have used different approximation methods. Among them Vijaya Kumar and Ramaiah
[8,9 ], Narita [10,11] and Gutierrez et al. [12] used Rayleigh-Ritz method, Greenberg and Stavsky [13] used finite
difference method and Ginesu et al. [14] and Gorman [15] used finite element method.

A lot of information on annular circular plates having varying thickness is also available in the existing literature. Kim
and Dickinson [16] have analyzed composite circular plates as a particular case of annular plates by taking inner radius
very small but only few results are given on circular plates and that too for uniform thickness only. Laura et al. [17]
have analysed annular circular plates having cylindrical anisotropy and non-uniform thickness using polynomial
coordinates functions. Chen [18] studied lateral vibration of isotropic and orthotropic thin annular and circular plates
of arbitrarily varying thickness along radius using finite element method and obtained natural frequencies and mode
shapes of the axisymmetric and asymmetric modes. In these papers, variation of thickness depends only on one taper
parameter and there is no mention of nodal lines and mode shapes. In recent years N. Bhardwaj and his co-researchers
[19] studied asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness with
same boundary conditions

In the present paper, asymmetric vibration of annular plates of polar orthotropic material having quadratically varying
thickness (along radius) and resting on Winkler elastic foundation is analysed by using boundary characteristic
orthonormal polynomials in Rayleigh-Ritz method. Two taper parameters are used for quadratic thickness variation,
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which give more flexibility to distribute the mass economically according to thickness variation. Many thickness
variations can be approximated by it by suitably choosing the values of taper constants. Convergence of frequencies
atleast upto five significant figures is shown. Comparison of frequencies in particular cases are made with the results
already available in the literature. Mode shapes for first ten normal modes of vibrations for all possible four
combinations when one of the boundaries is free are presented. Although a close, agreement is found but present
results are found to be better in almost all the cases.

1. ANALYSIS

A thin annular plate of outer radius a, inner radius b variable thickness h(r), made up of orthotropic material and
resting on Winkler elastic foundation is considered. The plate is subjected to polar coordinates (r,@) by taking the

center of the plate as origin and the middle plane of the plate in the coordinate plane. For free flexural asymmetric
vibration of the plate, let w(r, &,t) be the deflection of the plate at any point (r,&) atany time t.

For applying the Rayleigh-Ritz method, the functional
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obtained by subtracting the maximum kinetic energy from the maximum strain energy of the plate is to be minimized,

where ~

R=r/a,Ry=b/a H,F(R)=h(r)/a, e =E,/E =v,/v,, 9 =Gk,
s, =121—e,v?), w(r,0,t)=aW(R)cosaT, K, —s, ak, [Er/_ls] > ?)

a

W(R,0) =W, (R)cosmé, T =(t/a)J(E, /p) , Q*=s.w?/HZ )

Here E, andE, and Vrand V4 are the Young’s modulii and Poission’s ratio’s in I and & directions, G is the

shear modulus, K . is the foundation constant, 0 is the density of the plate, H a IS the thickness of the plate at the
outer edge R =1, m is the number of nodal diameter and @ is the natural frequency of harmonic vibration. A comma
followed by a suffixed variable denotes differentiation with respect to that variable.
For quadratically varying thickness of the plate in the radial direction F(R) is taken as
2
F(R)=1-a(1-R)- B(L-R)?, a@—R,)+BAL-R,)? <1 @3)
where aand f are the taper constants.

The N-term approximation of the deflection function is taken as

Wm(R):ZijcDj(R) , 4)
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where @ ; are the orthonormal polynomials satisfying at least the geometric edge conditions
of the plate. Using three terms recurrence relation given by Chihara [20], & ; are generated as

o =7
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Ro
The values of P istaken 0,1 or 2 according as the plate is subjected to free (F), simply supported (S) or clamped  (C)
edge conditions.

Substitution of Wm (R)from Equation (4) into energy Equation (1) and then minimization of J (W )as a function of

the coefficients C,; leads to the standard eigen value problem:
N
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The eigen values (Q)and the eigen vectors(c i ) are computed by Jacobi method. The mode

shapes are computed from Equation (4).

2. RESULTS AND DISCUSSIONS

In all nine parameters R, 3, K ,e,,d,, p,v, ahd N are used in the analysis of this plate. The values of v

and g, are taken to be 0.31 and 5.0 respectively for all computation except for the Table 2, where other values are

also taken for the sake of comparison to known results. The variations in thickness parameters for all possible
four combinations are taken for both & and £ from —0.4 to 0.4 in steps of 0.1.

Table 1 shows the convergence of first ten frequencies ¢ at least upto five significant figures for all

possible four combinations C-F, S-F, F-C and F-S of edge conditions at outer and inner edges when
a=pB=04,e =g, =5.0,R, =0.5and K, =500. The suffixes m and n with Q denote number of nodal

diameters and number of nodal circles respectively. It can be seen that 7 terms are required to get this accuracy in all
the cases.
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Comparison of ¢  for polar orthotropic annular plates of uniform thickness with Gorman[15],

Narita,[10], and Kim and Dickinson[16] are given in Table 2 and with Gutierrez et al. [12] in Table 3. Our results are
found to be better even for lesser number of terms in almost all the cases besides agreeing closely with their results.

Table 3 shows the variation in Q. with increasing e, for C-F, S-F, F-C and F-S plates. It is found that
there is no specific pattern in ¢ =~ with the increase of e, . For C-F plate 3 |, Q. ;. Q,, Qg and Q)
increase whereas Q00,0 Q50 Qmand quldecrease. For S-F plate Qo0 Q50 and Q,, first increase and
then decrease whereas Q0,0 0, and Qz’ldecrease and Qo Qs and Qo increase. For F-C plate, it is
observed that O3, first increases and then decreases whereas Q3 ,, ©Q, ,, Q. Q. Q,, andQy,  decrease
and QL0 Qg and Qo increase. For F-S plate, Qo and Q. first increase and then decrease whereas ()
Q,, Q,andQ,, decreaseand Q , Q, ,, Q,  and Q3 increase.

1,0’

Three Dimensional mode shapes for CF and FC boundary conditions are given in Figures 1-2 when when
a==04, e =g, =5.0, R, =0.5,K, =500.

3. CONCLUSION

It has been shown that frequencies and three dimensional mode shapes of orthotropic annular circular plate when one
of the boundaries is free, with varying thickness resting and on elastic foundation can be solved efficiently by using
boundary characteristic orthonormal polynomials in the Rayleigh-Ritz method. It reduces the problem into standard
eigenvalue problem. Accuracy of the results can be increased by increasing the order of approximation. But the order
of approximation cannot be increased arbitrarily because after a certain order the results start diverging due to
accumulation of rounding off errors. This study may help the design engineers before finalizing a design in different
engineering applications like aeronautical space shuttle components, machine parts, civil structures, etc. by suitably
choosing the values of thickness taper parameters.
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Table 1: Convergence of Q= when o =f=04, e, =9, = 5.0,R, =0.5,K; =500

n

Edge conditions Qoo QI,O QQ’O Q3,0 Q4,0 QS,O Qo,1 Q1,1 Q@o Q)

(_inner, outer)

26.122 | 27.122 | 31.050 | 40.011 | 55.348 | 77.092 | 79.424 | 89.337 | 104.38 | 114.42
26.122 | 27.122 | 31.048 | 40.002 | 55.325 | 77.052 | 79.424 | 89.334 | 104.77 | 114.40
26.122 | 27.122 | 31.047 | 40.000 | 55.320 | 77.044 | 79.424 | 89.334 | 104.76 | 114.40
26.122 | 27.122 | 31.047 | 40.000 | 55.320 | 77.044 | 79.423 | 89.334 | 104.76 | 114.40

C-F

0 3 N W

QO,O QI,O QZ,O Q3,O Q4,0 QO,I Ql,l QS,O QZ,O Q6,0

S-F 23.725 | 24.630 | 28.444 | 37.660 | 23.498 | 60.194 | 71.909 | 75.728 | 99.841 | 103.86
23.725 | 24.630 | 28.444 | 37.660 | 53.496 | 60.194 | 71.908 | 75.720 | 99.840 | 103.84
23.725 | 24.630 | 28.444 | 37.660 | 53.496 | 60.194 | 71.908 | 75.719 | 99.840 | 103.83

23.725 | 24.630 | 28.444 | 37.660 | 53.496 | 60.194 | 71.908 | 75.719 | 99.840 | 103.83

~N N D b

QO,O QI,O QZ,O Q3,0 QO,I Ql,l Q4,O QZ,I QS,O QS,I

30.980 | 41.688 | 61.097 | 85.916 | 86.360 | 104.16 | 117.13 | 141.73 | 155.19 | 184.76
30.980 | 41.687 | 61.091 | 85.898 | 86.300 | 104.06 | 117.09 | 141.58 | 155.15 | 184.61
30.980 | 41.686 | 61.089 | 85.890 | 86.298 | 104.06 | 117.07 | 141.58 | 155.08 | 184.59
30.980 | 41.686 | 61.089 | 85.980 | 86.298 | 104.06 | 117.07 | 141.58 | 155.08 | 184.59

N N D B

S-F

QO,O QI,O QZ,O QO,I Q},O Ql,l Q4,0 QZ,I QS,O QS,I

26.620 | 35.133 | 52.671 | 64.449 | 76.765 | 83.251 | 107.55| 120.31 | 145.14 | 162.45
26.620 | 35.132 | 52.667 | 64.436 | 76.748 | 83.221 | 107.51| 120.26 | 145.06 | 162.40
26.620 | 35.132 | 52.666 | 64.435 | 76.744 | 83.219 | 107.49| 120.25 | 145.02 | 162.38
26.620 | 35.132 | 52.666 | 64.435 | 76.744 | 83.219 | 107.49] 120.25 | 145.02 | 162.38

~N SN L K
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Table :2 Comparison of Q= for polar orthotropic annular plates of uniform thickness when er =5.0, g r =0.356,

R,=05 K, =0

Edge Spresentce Qoo Qi Qs Qs Qo Q Qup Q) Qs Qs
conditions | of
(inner,outer) results
Gorman[15] 11.30 18.05 33.80 56.521 73.462 78.439 L 93.794 . 120.08
Narita[10] 11.30 18.05 L L L L L . L .
E.C Kim[16] 11.305 | 18.045 33.795 56.522 | 73.459 78.436 | 85.450 | 93.790 119.72 | 120.08
- (Present) 11.305 | 18.045 33.795 56.522 | 73.459 78.436 | 85.451 93.790 119.72 | 120.08
6terms
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Table 3: Comparison of Q= with ref.[ 9] for polar orthotropic annular plates of uniform thickness when
K, =0,v, =0.3/¢e, 9, =1/2(1+v,)

er l—b
Edge R, 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
conditions Ref

(inner, outer)

0.50 [12] 3.835 |3.403 |3.230 |3.244 |3.430 |3.844 |4.658 |6.416 | 11.887
Present | 3.6884 | 3.3692 | 3.2257 | 3.2436 | 3.4303 | 3.8443 | 4.6576 | 6.4162 | 11.887
0.75 [12] 4434 |4.159 |4.033 |4.086 |4.338 |4.870 |5.9060 |8.139 | 15.082
Present | 4.3585 | 4.1340 | 4.0292 | 4.0854 | 4.3377 | 4.8704 | 5.9060 | 8.1392 | 15.082
1.0 [12] 4.898 |4.737 |4.668 |4.765 |5.077 |5711 |6931 |9.555 |17.709
Present | 4.8533 | 4.7177 | 4.6641 | 4.7640 | 5.0769 | 5.7108 | 6.9310 | 9.5554 | 17.709
1.25 [12] 5286 |5.213 |5.201 |[5344 |5714 |6.439 |7.821 |10.787 | 19.993
Present | 5.2572 | 5.1968 | 5.1972 | 5.3434 | 5.7139 | 6.4385 | 7.8209 | 10.786 | 19.993
1.50 [12] 5.625 |5.621 |5.664 |5.855 |6.280 |7.089 |8.618 | 11.890 |22.042
Present | 5.6056 | 5.6075 | 5.6610 | 5.8541 | 6.2802 | 7.0886 | 8.6178 | 11.890 | 22.042

F-S

0.50 [12] 9.083 19.167 |10.333 | 12.697 | 16.966 | 25.052 | 42.619 | 92.591 | 359.969
Present | 8.6657 | 9.1308 | 10.329 | 12.696 | 16.966 | 25.052 | 42.619 | 92.591 | 359.969
0.75 [12] 9.732 19.858 |10.909 | 13.164 | 17.347 | 25.366 | 42.882 | 92.813 | 360.160
Present | 9.6026 | 9.8258 | 10.905 | 13.163 | 17.347 | 25.366 | 42.882 | 92.813 | 360.160
1.0 [12] 10.244 | 10.437 | 11.428 | 13.603 | 17.715 | 25.674 | 43.142 | 93.035 | 360.350
Present | 10.159 | 10.408 | 11.424 | 13.603 | 17.714 | 25.674 | 43.142 | 93.035 | 360.350
F-C 1.25 [12] 10.577 | 10.936 | 11.901 | 14.019 | 18.070 | 25.977 | 43.400 | 93.256 | 360.541
Present | 10.613 | 10.910 | 11.896 | 14.018 | 18.070 | 25.977 | 43.400 | 93.256 | 360.541
1.50 [12] 11.044 | 11.375 | 12.334 | 14.412 | 18.415 | 26.275 | 43.656 | 93.477 | 360.731
Present | 11.001 | 11.351 | 12.329 | 14.411 | 18.415 | 26.275 | 43.656 | 93.476 | 360.731
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Fig. 1: First ten normal modes of vibration of C-F plates when o = f#=0.4,¢e, =g, =5.0, R, =0.5,K; =500.
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