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Abstract: In this paper, we define generalized Fibonacci numbers and a special cases, and we will recover the 
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called symmetric functions. 
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1. INTRODUCTION 

  The second order recurrence sequence has been generalized in two ways mainly, first by preserving the initial 

conditions and second by preserving the recurrence relation. 

Kalman and Mena [12] generalize the Fibonacci sequence  
NnnF  by 

Fn  aFn1  bFn2 , n  2
 

with 00 =F  and .11 =F   

Horadam [10] defined generalized Fibonacci sequence N}{ nnH  by 

Hn  Hn1  Hn2 , n  3
 

with  pH =1   and  ,2 qpH +=   where p and q  are arbitrary integers. 

The generalized Fibonacci sequence 
N}{ nnU  is defined by recurrence relation  
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where ,a b  are arbitrary integers and ,   are complex numbers. 

This sequence has been studied by many authors, see for example [10], [12] and [18]. 
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Note that generalized Fibonacci sequence is the generalization of the well-known sequences k -Fibonacci, k -

Lucas, k -Pell, k -Pell Lucas, k -Jacobsthal numbers, Gaussian Fibonacci and Gaussian Lucas numbers, Gaussian 

Jacobsthal and Gaussian Jacobsthal Lucas numbers. 

In fact, the well-known sequences below are special cases of the generalized Fibonacci sequence 

• Putting  ka ==   and =b 1=   reduces to k -Fibonacci numbers known as 
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+= −−
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Put 1=k  in the relationship (1.1) we get Fibonacci numbers  
NnnF  . 

• Substituting ,ka ==   1=b  and 2=  yields k -Lucas numbers given by 
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Put  1=k   in the relationship (1.2) we get Lucas numbers  
NnnL  . 

• Taking ,2=a ,kb = 0=   and 1=   gives k -Pell numbers given by 
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Put 1=k  in the relationship (1.3) we get Pell numbers  
NnnP  . 

• Taking 2=== a  and kb =  gives k -Pell Lucas numbers given by 
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Put 1=k  in the relationship (1.4) we get Pell Lucas numbers  
NnnQ  . 

• Taking ,ka = ,2=b  ,0=  1=  gives k -Jacobsthal numbers given by 
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     Put  1=k   in the relationship (1.5) we get Jacobsthal numbers  
NnnJ  . 

• In the case when 1== a   and  = 2=b  and it reduces to Jacobsthal Lucas numbers known as 
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• In the case when 1=== ba  and i=  and it reduces to Gaussian Fibonacci numbers known as 
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• In the case when ,1== ba  i−= 2  and i21+=  and it reduces to Gaussian Lucas numbers known as 
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• In the case when ,1== a  2=b  and 
2

i=   it reduces to Gaussian Jacobsthal numbers known as 
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• In the case when ,1=a ,2=b
2

2 i−=  and  i21+=  it reduces to Gaussian Jacobsthal Lucas numbers 

known as 
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In order to determine generating functions of generalized Fibonacci numbers, we use analytical means and series 

manipulation methods. In the sequel, we new symmetric functions and some new properties. We also give some 

more useful definitions which are used in the subsequent sections. From these definitions, we prove our main results 

given in Section 3. 

2. DEFINITIONS AND SOME PROPERTIES  

   In order to render the work self-contained we give the necessary preliminaries tools; we recall some definitions 

and results. 

 Definition 1:  Let k and n  be two positive integers and  naaa ,...,, 21  are set of given variables the  k -th 

elementary symmetric function ( )nk aaae ...,, ,21 is defined by 

( ) ( )nkaaaaaae n

n

i

n

ii

kiii

nk =
=+++

 0     ......,, 21

21

21

...

,21  

with 0,...,, 21 =niii  or 1 . 

 Definition 2:  Let k  and n  be two positive integers and  naaa ,...,, 21  are set of given variables the k -th 

complete homogeneous symmetric function ( )nk aaah ,...,, 21  is defined by 

( ) ( )nkaaaaaah n

n

i

n

ii

kiii

nk =
=+++

 0      ......,, 21

21

21

...

,21  

with  0,...,, 21 niii  . 

 Remark 1: Set  ( ) 1...,, ,210 =naaae   and  ( ) 1...,, ,210 =naaah  , by usual convention.  For ,0k   we set  

( ) 0...,, ,21 =nk aaae   and ( ) 0...,, ,21 =nk aaah  . 

 Definition 3: [1] Let A  and P  be any two alphabets. We define )( PASn −   by the following form 

,)(
)1(

)1(

0

n

n

nAa
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tPAS
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pt
−=

−

−


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
                                     (2.1) 

with the condition  0)( =−PASn  for  .0n   

Equation (2.1) can be rewritten in the following form  
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where  

).()()(
0

ASPSPAS jjn

n

j

n −=− −

=

  



Souhila BOUGHABA et al. / TAMAP Journal of Mathematics and Statistics Volume 2019 

 

 

4 

 Definition 4: [5] Given a function f on 
nR , the divided difference operator is defined as follows 

.
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 Definition 5: [2] The symmetrizing operator 
k

ee 21
 is defined by  

.Nallfor 
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−
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3. Generating Function of Generalized Fibonacci Numbers 

  The following lemmas allows us to obtain many generating functions of generalized Fibonacci numbers and some 

well-known numbers cited above, using a technique symmetric functions. we refer the reader to see the references 

[4-12] . 

 Lemma 1: [5] Given an alphabet  ,, 21 aaA −=  we have 

.
)()(1

1
])[(

2

21

21

0 zASzAS
zaaS n

n

n −+−+
=−+

+

=

                 (3.1) 

 Lemma 2: [5] Given an alphabet  ,, 21 aaA −=  we have 

.
)()(1

])[(
2

21
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0 zASzAS

z
zaaS n

n

j −+−+
=−+−

+
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              (3.2)   

Setting 
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2

1
  in (3.1) and (3.2) this gives 
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0 bzaz
zaaS n

n
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                              (3.3) 

and  

.
1

])[(
2211

0 bzaz

z
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n
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+

=

                             (3.4) 

Multiplying the equation (3.3) by )( and collect it by the equation (3.4) multiplied by )(  p−   we obtain 

  ,
1

)(
])[()(])[(

221121

0 bzaz

zp
zaaSpaaS n

nn

n −−

−+
=−+−+−+ −



=




           (3.5)  

and we have the following proposition. 

 Proposition 1: For ,Nn  the new generating function of generalized Fibonacci numbers is given by 

,
1

)(
2

0 bzaz

zp
tU n

n

j −−

−+
=

+

=

  

with  ]).[()(])[( 21121 aaSpaaSU nnn −+−+−+= −   

Accordingly, we conclude the following Corollaries. 

 Corollary 1: For ,Nn  the generating function of k -Fibonacci numbers is given by 
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• Put  1=k   in the relationship (3.6) we have 
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n
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
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wich representing a generating function of Fibonacci numbers with ]).[( 21 aaSF nn −+=   

 Corollary 2:  For ,Nn  the generating function of k -Lucas numbers is given by 

]).[(])[(2 with ,
1
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21121 ,2 ,

0
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n
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• Put 1=k  in the relationship (3.7) we have 
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 wich representing a generating function of Lucas numbers with  ]).[(])[(2 21121 aaSaaSL nnn −+−−+= −   

 Corollary 3: For ,Nn  the generating function of k -Pell numbers is given by  

]).[( with ,
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211 ,2 ,

0
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kzz

z
zP nnk

n
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

=
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• Put  1=k   in the relationship (3.8) we have 

,
21 2

0 zz

z
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n

n −−
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
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wich representing a generating function of Pell numbers with  ]).[( 211 aaSP nn −+= −   

 Corollary 4: For Pell Lucas numbers is given by- k the generating function of  ,Nn    

]).[(2])[(2 with ,
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0
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• Put  1=k   in the relationship (3.9) we have 
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Wich representing a generating  function of Pell Lucas numbers with: 

]).[(2])[(2 21121 aaSaaSQ nnn −+−−+= −  

 Corollary 5: For ,Nn  the generating function of k -Jacobsthal numbers is given by 

]).[( with ,
1

211 ,2 ,

0

aaSJ
zkz
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n
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Put 1=k  in the relationship (3.10) we have 
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wich representing a generating function of Jacobsthal numbers with ]).[( 211 aaSJ nn −+= −   
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 Corollary 6: For ,Nn  the generating function of Jacobsthal Lucas numbers is given by 

1 2 1 1 22
0

2
,  with 2 ( [ ]) ( [ ]).

1 2
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 Corollary 7: For  ,Nn  the generating function of Gaussian Jacobsthal numbers is given by 

1 2 1 1 22
0

(2 )
,  with ( [ ]) (1 ) ( [ ]).

2 2 4 2 2
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 Corollary 8: For ,Nn  the generating function of Gaussian Jacobsthal Lucas numbers is given by 

1 2 1 1 22
0

4 (5 2) 5
,  with (2 ) ( [ ]) ( 1) ( [ ]).
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 Corollary 9: For ,Nn  the generating function of Gaussian Fibonacci numbers is given by 

1 2 1 1 22
0

(1 )
,  with ( [ ]) (1 ) ( [ ]).
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 Corollary 10: For ,Nn  the generating function of Gaussian Lucas numbers are given by 

( ) ]).[()31(])[(2 with ,
1

)31(2
211212

0

aaSiaaSiGL
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zii
zGL nnn

n

n

n

−++−+−+−=
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

=

  

Conclusion 
In this paper, by making use of Eq. (3.1) and (3.2), we have derived some new generating function for generalized 

Fibonacci numbers. It would be interesting to apply the methods shown in the paper to families of other special 

numbers. 
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