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Abstract: In this paper, we define generalized Fibonacci numbers and a special cases, and we will recover the
generating functions of some generalized Fibonacci numbers. The technic used her is based on the theory of the so

called symmetric functions.
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1. INTRODUCTION
The second order recurrence sequence has been generalized in two ways mainly, first by preserving the initial

conditions and second by preserving the recurrence relation.

Kalman and Mena [12] generalize the Fibonacci sequence {Fn }ne N Y
Fﬂ - aFn_1+bF/7_2, /722

with F =0and F =1.

Horadam [10] defined generalized Fibonacci sequence {Hn}neN by
Hp = Hp1 + Hypp, 1> 3

with H;=p and H,=p+0, where pand ( are arbitrary integers.

The generalized Fibonacci sequence {U 3} _,, is defined by recurrence relation

U,=au,,+bU, ,, n>2
Uy=a,U;=p

where @, b are arbitrary integers and «, [ are complex numbers.

This sequence has been studied by many authors, see for example [10], [12] and [18].
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Note that generalized Fibonacci sequence is the generalization of the well-known sequences K -Fibonacci, K -
Lucas, K -Pell, K -Pell Lucas, K -Jacobsthal numbers, Gaussian Fibonacci and Gaussian Lucas numbers, Gaussian

Jacobsthal and Gaussian Jacobsthal Lucas numbers.

In fact, the well-known sequences below are special cases of the generalized Fibonacci sequence

e Putting @a= =K and b= a =1 reduces to K -Fibonacci numbers known as

{Fk, =KF o +F ., nx2

1.1
Feo=1 F..=k (b

Put K =1 in the relationship (1.1) we get Fibonacci numbers {Fn}

neN *

e Substituting a= =K, b=1and o =2 yields K -Lucas numbers given by

L .=kL .,+L .,, nN>2
k, n k, n-1 k, n-2 (1.2)
Lo=2L .=k
Put K =1 in the relationship (1.2) we get Lucas numbers {Ln }neN .
e Takinga=2,b=Kk, =0 and f =1 gives K -Pell numbers given by
P =2P, _.,+kR, _,,n>2
k,n k, n-1 k, n-2 (1.3)
P.o=0 PR, =1
Put K =1 in the relationship (1.3) we get Pell numbers {Pn }'neN .
e Taking a=a = =2 and b=K gives k -Pell Lucas numbers given by
Qk,nzsz,nfl—i_ka,n—Z , N2 (1.4)
Qo=2Q,.=2 .

Put K =1 in the relationship (1.4) we get Pell Lucas numbers {Qn }

neN *
e Taking a=Kk, b=2, =0, £ =1 gives K -Jacobsthal numbers given by
{Jk’ n=kd a2 i N2

1.5
3, 0=0, 3, =L (15)

Put K =1 in the relationship (1.5) we get Jacobsthal numbers {J n }nEN .
In the case when @ = #=1 and @ =D =2 and it reduces to Jacobsthal Lucas numbers known as

{jn=jn_1+2jn_2, n>2
j0:2| j1:1'

In the case when @ =D = f# =1 and a =1 and it reduces to Gaussian Fibonacci numbers known as
GF,=GF, ,+GF, ,, n>2
GF, =i, GF, =1.

In the case when @a=b =1, @ =2—1 and f =1+ 2i and it reduces to Gaussian Lucas numbers known as
GL,=GL,,+GL,,, n>2
GL, =2-i, GL, =1+2i.

In the case when a = ,6' =1 b=2and a = é it reduces to Gaussian Jacobsthal numbers known as
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e Inthecasewhen a=1b=2 a=2 —% and f =1+2i itreduces to Gaussian Jacobsthal Lucas numbers

known as
Gjn :Gjn—l+2Gjn—2’ nx2
Gj,=2-4, Gj, =1+2i.

In order to determine generating functions of generalized Fibonacci numbers, we use analytical means and series
manipulation methods. In the sequel, we new symmetric functions and some new properties. We also give some
more useful definitions which are used in the subsequent sections. From these definitions, we prove our main results
given in Section 3.
2. DEFINITIONS AND SOME PROPERTIES

In order to render the work self-contained we give the necessary preliminaries tools; we recall some definitions

and results.

Definition 1: Let K and n be two positive integers and {ai,az,...,an} are set of given variables the K -th
elementary symmetric function €, (ai, a, ..., a, ) is defined by

e (a,a,..a,)= > aray.ay (0O<k<n)

I+ +.. i =k
with i,i,,...,i, =0 or 1.

Definition 2: Let K and N be two positive integers and {ai,az,...,an} are set of given variables the K -th

complete homogeneous symmetric function h, (ai, a, ,...,an) is defined by

h(a.a,...a)= > awar.ar (0<ks<n)

Iy +ip 4.4, =k

with i,1,,...,1, 20 .

n
Remark 1: Set eo(ai,azy...,an)=1 and ho(%’az,---aan)zl , by usual convention. For kK <0, we set
ek(ai,azl...,an)zo and hk(al,azv...,an)zo.

Definition 3: [1] Let A and P be any two alphabets. We define Sn(A— P) by the following form

p.sP (1 pt = n
S (A-P)t", 2.1
agA(l at) Z0 n( ) ( )

with the condition S, (A—P)=0 for n<O.

Equation (2.1) can be rewritten in the following form
>'S,(A-P)t" :(an(A)t“jx(ZSn(—P)t”], 2.2)
n=0 n=0 n=0

where

S, (A-P) = Zn:Snfj (=P)S; (A).
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Definition 4: [5] Given a function f on R", the divided difference operator is defined as follows

GE f(py, P, piﬂ,...pn)_pf_(%,...pil, Py P Pz P).
i i+1

Definition 5: [2] The symmetrizing operator é;klez is defined by

k Ak
O, (9) = P 9(P) = P9 (P) for all k € N.
pl_ pz

3. Generating Function of Generalized Fibonacci Numbers

The following lemmas allows us to obtain many generating functions of generalized Fibonacci numbers and some
well-known numbers cited above, using a technique symmetric functions. we refer the reader to see the references
[4-12].

Lemma 1: [5] Given an alphabet A = {6\1,—612 } we have

— 1
S,(a,+[-3,])z" = . 3.1
Z; ol 1+S,(-A)z+S,(-A)2* e
Lemma 2: [5] Given an alphabet A = {al,—az }, we have
<& z
S +[-a,])z" = : 3.2
; et a2 = SCALIS. (AT (32)
S (-A)=-a o
Setting in (3.1) and (3.2) this gives
S,(-A)=-b
is (& +[-a,])7" S S (33)
rr il 1-az —bz®
and
+o0 7
S —a = 34
,—Zo @ raDe" = (34)

Multiplying the equation (3.3) by (&) and collect it by the equation (3.4) multiplied by ( — pa) we obtain

(65, (, +[-a,]) + (B pa)S, 1 (@ +[-a,])]z" = LI PNz o

2
pard l-az-hz
and we have the following proposition.
Proposition 1: For n € N, the new generating function of generalized Fibonacci numbers is given by

—" 1-az—bz* '

with U, =aS, (8, +[-8,]) + (8- pa)S, ,(a, +[-2.]).

Accordingly, we conclude the following Corollaries.

Corollary 1: For n e N, the generating function of K -Fibonacci numbers is given by
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sz ntn = L 21 Wlth I:k n— Sn(a1+[_a2])' (3-6)
= 1-kz—1z ’
e Put k=1 inthe relationship (3.6) we have
z = T
1 7-17°

wich representing a generating function of Fibonacci numbers with F, =S, (a, +[-a,]).

Corollary 2: For n e N, the generating function of K -Lucas numbers is given by

= n 2—kz .
Z}mﬁ=T?;7?VWhRnIBA%+F%D—mM@ﬁTﬁﬂ) 37
n=0 - -

e Put k=1 in the relationship (3.7) we have

S, un 2-1
St =t

= 1-z-z2
wich representing a generating function of Lucas numbers with L, =2S _(a, +[-a,])—S,_;(a, +[-a,]).

Corollary 3: For n e N, the generating function of K -Pell numbers is given by

- z :
P z" =, with P, =S +|1—a,]). 3.8
nZ:(; k,n l_ZZ_kZZ k, n n—l(ai [ 2]) ( )

e Put k=1 inthe relationship (3.8) we have

EZP _l 27 —7°

wich representing a generating function of Pell numbers with P, =S, (&, +[-a,]).

Corollary 4: For Pell Lucas numbers is given by- K the generating function of n e N,

- N 2-212 .
D> Q.2 1 27 K kzz,WIth Q..=2S(a +[-a,])-2S (&, +[-a,]). (39
n=0 - -

e Put k=1 inthe relationship (3.9) we have

- 2-2z2
> Q2 =
o 1-2z-z2

Wich representing a generating function of Pell Lucas numbers with:

Q. =25,(a, +[-a,])-25, ,(a +[-a,]).

Corollary 5: For n € N, the generating function of K -Jacobsthal numbers is given by

3, 2" = with 3, =S, (& +[-3,]). (3.10)
mar S 1-kz—-z

Put kK =1 in the relationship (3.10) we have

>3-t

n=0 —Z

wich representing a generating function of Jacobsthal numbers with J, =S, (&, +[-a,]).
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Corollary 6: For n € N, the generating function of Jacobsthal Lucas numbers is given by

D1t = With], =25, 48] -5, @ +[-aD)

Corollary 7: For n e N, the generating function of Gaussian Jacobsthal numbers is given by

> 63,2 = s With G, = 58, (& + 2] + (S, @+ -]

Corollary 8: For n € N, the generating function of Gaussian Jacobsthal Lucas numbers is given by

> A—iGi-2z N5 -
> Gj,2" = B with G, = (- )S, (8, +[-a.) + (G- DS, (3, + -3,

Corollary 9: For n € N, the generating function of Gaussian Fibonacci numbers is given by

> GF,2 =007, with OF, =i, & + [, + (DS, ,(a +[-a;])

Corollary 10: For n € N, the generating function of Gaussian Lucas numbers are given by

>otzn = 2 EEL with 6L, = (2-1)8, (8, +[-a.]) + (143D, 4 (3 +[-a.D).
n=0 — &
Conclusion

In this paper, by making use of Eq. (3.1) and (3.2), we have derived some new generating function for generalized
Fibonacci numbers. It would be interesting to apply the methods shown in the paper to families of other special

numbers.
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