
 

 
Tamap Journal of Mathematics and 

Statistics 
http://www.tamap.org/  

 

         doi:10.29371/2020.16.SI-TAMAP-SAP002 

         Volume 2020, Article ID SI-TAMAP-SAP002             
          Research Article

 

NEW INTEGRAL TRANSFORM ”AF TRANSFORM” and  SYSTEM OF 

INTEGRO-DIFFERENTIAL EQUATIONS 

 

Seyed Ahmad Pourreza Ahmadi1,* and Seyed Fardiss Pourreza Ahmadi2 
 

 
1Department of Mathematics, University of Mazandaran, Babolsar, Iran 

2Department of  Mathematics, University of Alzahra, Tehran, Iran, 
 

 
Received: 04.08.2019     Accepted: 10.05.2020             Published Online: 27.05.2020 

  

 

Abstract: In this research paper, a new integral transform, namely AF transform was introduced and applied to 
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obtaining analytical solution of some system of Volterra integral and Integro differential equation. we will solve 

some examples by the homotopy perturbation method (HPM) and compare to new integral transform method .  
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1. Introduction 

Recently, a new integral transform was introduced and was named as AF transform  which is defined by 

𝑝(𝑣) = 𝐴𝐹{𝑓(𝑡)} = 𝑣 ∫ 𝑒−𝑣
2𝑡  𝑓(𝑡)𝑑𝑡  and   𝐴𝐹−1{𝑣 ∫ 𝑒−𝑣

2𝑡  𝑓(𝑡)𝑑𝑡
∞

0
} = 𝑓(𝑡)        

∞

0
                            (1.1) 

The AF integral transform states that, if f(t) is a piecewise continuous on every finite interval in [0,+∞) and 

exponential order. The 𝐴𝐹−1 will be inverse of the AF integral transform (1.1). 

Definition1.1. The function f(t) is called exponential order on every finite interval in [0,+∞) that satisfying  

|𝑓(𝑡)| ≤ 𝑀𝑒𝑎𝑡 , ∃𝑀 > 0  ∀𝑡 ∈ [0, +∞).            

Theorem 1.2. (Criteria for Convergance). The AF integral transform AF {f (t)} exists if it has exponential order 

and integral exists for any b>0. 

Proof. Since we only need to show convergence for sufficiently large ν, assume 𝑣 < √𝑐 𝑎𝑛𝑑 𝑣 > 0. We break the 

integral of  𝑣 ∫ |𝑓(𝑡) 𝑒−𝑣
2𝑡  𝑑𝑡|

∞

0
 into two integrals, one from 0 to n and another from n to ∞ which we have 

𝑣 ∫ |𝑓(𝑡) 𝑒−𝑣
2𝑡  |𝑑𝑡

∞

0

 =  𝑣 ∫ |𝑓(𝑡) 𝑒−𝑣
2𝑡  |𝑑𝑡

𝑛

0

+  𝑣 ∫ |𝑓(𝑡) 𝑒−𝑣
2𝑡  |𝑑𝑡

∞

𝑛

 

                                        ≤   𝑣 ∫ |𝑓(𝑡)|𝑑𝑡
𝑛

0

 +  𝑣 ∫ 𝑒−𝑣
2𝑡  |𝑓(𝑡)|𝑑𝑡,   

∞

𝑛
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                                         ≤   𝑣 ∫ |𝑓(𝑡)|𝑑𝑡
𝑛

0

 +  𝑣 ∫ 𝑒−𝑣
2𝑡  𝑀𝑒𝑐𝑡𝑑𝑡,                     𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 1.1  

∞

𝑛

 

                                          ≤   𝑣 ∫ |𝑓(𝑡)|𝑑𝑡
𝑛

0

 +  𝑣𝑀
𝑒(𝑐−𝑣

2)𝑡

𝑐 − 𝑣2
  𝑤ℎ𝑒𝑟𝑒  𝑡 = 𝑛 𝑡𝑜 ∞         𝑣 >  √𝑐,   

                                           ≤   𝑣 ∫ |𝑓(𝑡)|𝑑𝑡
𝑛

0

 +  𝑣𝑀
𝑒(𝑐−𝑣

2)𝑛

𝑐 − 𝑣2
 ,                                            𝑣 >  √𝑐,   

The first integral exists by assumption, and the second term is finite for 𝑣2 >  𝑐 , so the integral 

𝑣 ∫ 𝑒−𝑣
2𝑡  𝑓(𝑡)𝑑𝑡

∞

0
 convergence absolutely and the 𝐴𝐹{𝑓(𝑡)} transform exists∎ 

Theorem 1.3. (First transfer theorem). Let P(v) is the 𝐴𝐹{𝑓(𝑡)} transform function of f(t), i.e.   𝐴𝐹{𝑓(𝑡)} = 𝑃(𝑣). 

Then 

𝐴𝐹{𝑒±𝑎𝑓(𝑡)} =  
𝑣

√𝑣2 ± 𝑎
 𝑃 (√𝑣2 ± 𝑎). 

Proof. It is proved by the following calculation: 

 

𝐴𝐹{𝑒±𝑎𝑓(𝑡)} =  𝑣 ∫ 𝑒−𝑣
2𝑡  𝑒±𝑎 𝑓(𝑡)𝑑𝑡

∞

0

= 𝑣∫ 𝑒−(𝑣
2±𝑎)𝑡  𝑓(𝑡)𝑑𝑡

∞

0

= 
𝑣

√𝑣2 ± 𝑎
 𝑃 (√𝑣2 ± 𝑎)  ∎ 

Theorem 1.4. Let  𝐴𝐹{𝑓(𝑡)} = 𝑃(𝑣).  Then 

  𝐴𝐹{𝑓(𝑛)(𝑡)} = 𝑣(2𝑛)𝑃(𝑣) − ∑𝑣2(𝑛−𝑘)−1
𝑛−1

𝑘=0

𝑓(𝑘)(0),     (𝑛 ≥ 1)                                                              (1.2) 

Proof: By substituting  𝑓(𝑡) 𝑤𝑖𝑡ℎ 𝑓′(𝑡)  into (1.1) we obtain  𝐴𝐹{𝑓′(𝑡)} = 𝑣 ∫ 𝑒−𝑣
2𝑡  𝑓′(𝑡)𝑑𝑡 

∞

0
. By integrating by 

part we have 

𝐴𝐹{𝑓′(𝑡)} = 𝑣2𝑃(𝑣) − 𝑣𝑓(0) 

which equals to (1.2) with n=1 exactly. Let 𝑔(𝑡) = 𝑓′(𝑡) then  𝑔′(𝑡) = 𝑓′′(𝑡)  by substituting  𝑓(𝑡) 𝑤𝑖𝑡ℎ 𝑓′′(𝑡) into 

(1.1) again we obtain  

𝐴𝐹{𝑓′′(𝑡)} = 𝑣∫ 𝑒−𝑣
2𝑡  𝑓′′(𝑡)𝑑𝑡.  

∞

0

 

By integrating by part we have 

𝐴𝐹{𝑓′′(𝑡)} = 𝑣4𝑃(𝑣) − 𝑣3𝑓(0) − 𝑣𝑓′(0) 

that this formula is equal to (1.2) with n=2 exactly. (1.2) can be providing by mathematical induction ■ 

Theorem 1.5. Let  𝐴𝐹{𝑓(𝑡)} = 𝑃(𝑣).  Then  

  𝐴𝐹 {∫ 𝑓(𝑤)
𝑡

0

𝑑𝑤} =
1

𝑣2
𝑃(𝑣). 

Proof. Let  
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𝐺(𝑡) = ∫ 𝑓(𝑤)
𝑡

0
𝑑𝑤. 

Then 𝐺′(𝑡) = 𝑓(𝑡) and 𝐺(0) = 0. Taking 𝐴𝐹 transform of both sides, we have 

𝐴𝐹{𝐺′(𝑡)} = 𝑣2𝐴𝐹{𝐺(𝑡)} − 𝑣𝐺(0) = 𝑃(𝑣). 

Then 

𝐴𝐹{𝐺(𝑡)} =
1

𝑣2
𝑃(𝑣)  and    𝐴𝐹 {∫ 𝑓(𝑤)

𝑡

0
𝑑𝑤} =

1

𝑣2
𝑃(𝑣). ■ 

Theorem 1.6. Let 𝑃(𝑣) is the 𝐴𝐹{𝑓(𝑡)} transform of function 𝑓(𝑡) that means  𝐴𝐹{𝑓(𝑡)} = 𝑃(𝑣). Then 

 

𝐴𝐹{𝑡𝑓(𝑡)} =  
−1

2

𝑑

𝑑𝑣
(
𝑃(𝑣)

𝑣
)                                                                                                                     (1.4) 

𝐴𝐹{𝑡2𝑓(𝑡)} =  (
−1

2
)
2

 
𝑑

𝑑𝑣
(
1

𝑣

𝑑

𝑑𝑣
(
𝑃(𝑣)

𝑣
))                                                                                             (1.5)    

𝐴𝐹{𝑡𝑛𝑓(𝑡)} =  (
−1

2
)
𝑛

 
𝑑

𝑑𝑣
( 
1

𝑣
… 
𝑑

𝑑𝑣⏟    
𝑛 𝑡𝑖𝑚𝑒𝑠 

(
𝑃(𝑣)

𝑣
)… ),     (𝑛 ≥ 1)                                                            (1.6)   

Proof. As we know  𝑝(𝑣) = 𝐴𝐹{𝑓(𝑡)} = 𝑣 ∫ 𝑒−𝑣
2𝑡  𝑓(𝑡)𝑑𝑡.

∞

0
 First devide both side this equation by 𝑣   and take 

derivative respect to ν results: 

𝑑

𝑑𝑣
(
𝑃(𝑣)

𝑣
) = −2 𝑣 ∫ 𝑒−𝑣

2𝑡  𝑡𝑓(𝑡)𝑑𝑡.
∞

0⏟            
𝐴𝐹{𝑡𝑓(𝑡)}

 

Then 

𝐴𝐹{𝑓(𝑡)} =
−1

2

𝑑

𝑑𝑣
(
𝑃(𝑣)

𝑣
). 

It follows from (1.4) that 

𝐴𝐹{𝑓(𝑡)} =
−1

2

𝑑

𝑑𝑣
(
𝑃(𝑣)

𝑣
).  

Then 

𝑣 ∫ 𝑒−𝑣
2𝑡  𝑡𝑓(𝑡)𝑑𝑡 =  

−1

2

𝑑

𝑑𝑣
(
𝑃(𝑣)

𝑣
) .

∞

0

 

divide both side this equation by 𝑣 and take derivative respect to 𝑣 yields 

𝐴𝐹{𝑡2𝑓(𝑡)} =  (
−1

2
)
2

 
𝑑

𝑑𝑣
(
1

𝑣

𝑑

𝑑𝑣
(
𝑃(𝑣)

𝑣
)). 

Also, (1.6) can be providing by mathematical induction. Therefore, we complete the proof of this theorem. ■ 
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Theorem 1.7. Let 𝑃(𝑣)  and 𝑄(𝑣) are the 𝐴𝐹{𝑓(𝑥)} and 𝐴𝐹{𝑔(𝑥)} transform of function 𝑓(𝑥)f(x) and 𝑔(𝑥) that 

means 𝐴𝐹{𝑔(𝑥)} = 𝑄(𝑣)  and 𝐴𝐹{𝑓(𝑥)} = 𝑃(𝑣). Then the 𝐴𝐹 transform of the convolution of 𝑓(𝑥) and 𝑔(𝑥) 

(𝑓 ∗ 𝑔)(𝑥) = ∫ 𝑓(𝑡)𝑔(𝑡 − τ)𝑑τ 
∞

0

 

is given by 

𝐴𝐹{(𝑓 ∗ 𝑔)(𝑥)} =
1

𝑣
𝑃(𝑣)𝑄(𝑣).                                                                                                (1.7) 

Proof. The 𝐴𝐹 transform of (𝑓 ∗ 𝑔)(𝑡) is defined by 

𝐴𝐹{(𝑓 ∗ 𝑔)(𝑥)} = 𝑣∫ 𝑒−𝑣
2𝑡  ∫ 𝑓(𝑡)𝑔(𝑡 − τ)𝑑τ 𝑑𝑡 = 

∞

0

 
∞

0

𝑣∫ 𝑓(τ)𝑑τ  ∫ 𝑒−𝑣
2𝑡𝑔(𝑡 − τ) 𝑑𝑡 

∞

0

 
∞

0

 

Now setting t − τ = u we have 

𝑣 ∫ 𝑒−𝑣
2τ 𝑓(τ)𝑑τ  ∫ 𝑒−𝑣

2𝑡𝑔(𝑡 ) 𝑑𝑡 =
1

𝑣
 

[
 
 
 

  𝑣 ∫ 𝑒−𝑣
2τ 𝑓(τ)𝑑τ 

∞

0⏟            
𝑃(𝑣)

    𝑣 ∫ 𝑒−𝑣
2τ 𝑔(τ)𝑑τ 

∞

0⏟            
𝑄(𝑣)

 

]
 
 
 ∞

0

 
∞

0

=
1

𝑣
 𝑃(𝑣)𝑄(𝑣).  

Then 

𝐴𝐹{(𝑓 ∗ 𝑔)(𝑥)} =
1

𝑣
𝑃(𝑣)𝑄(𝑣).  

Thus this complete the proof. ■ 

2. Application to system of Integro-Differential Equations 

Let us consider the general first order system of integro-differential equation. 

{
 
 

 
 𝑦1

(𝑛)(𝑡) = 𝑓(𝑡) + ∫ [𝑦1(𝑥) + 𝑦2(𝑥)]𝑑𝑥 
𝑡

0

𝑦2
(𝑛)(𝑡) = 𝑔(𝑡) + ∫ [𝑦2(𝑥) − 𝑦1(𝑥)]𝑑𝑥 

𝑡

0

 

Whith the initial conditions, 𝑦1
(𝑘)(0) = 𝛼𝑘 ,    𝑦2

(𝑘)(0) =  𝛽𝑘  . By using AF transform into (2.1) we have 

{
𝑣2𝑛 𝑦1̅̅ ̅(𝑣)  −   ∑ 𝑣2(𝑛−𝑘)−1𝑛−1

𝑘=0 𝑦1
(𝑘)(0)  = 𝑃(𝑣) +

1

𝑣2
𝑦1̅̅ ̅(𝑣) +

1

𝑣2
𝑦2̅̅ ̅(𝑣) 

𝑣2𝑛 𝑦2̅̅ ̅(𝑣) −  ∑ 𝑣2(𝑛−𝑘)−1𝑛−1
𝑘=0 𝑦2

(𝑘)(0)  = 𝑄(𝑣) +
1

𝑣2
𝑦1̅̅ ̅(𝑣) −

1

𝑣2
𝑦2̅̅ ̅(𝑣)

                                  (2.2) 

Where 𝑦1̅̅ ̅ and 𝑦2̅̅ ̅ are 𝐴𝐹 transform of 𝑦1, 𝑦2 respectively. Substituting 𝑦1
(𝑘)(0) = 𝛼𝑘,    𝑦2

(𝑘)(0) =  𝛽𝑘  into (2.2) and 

solve these equations to find 

{
 𝑦1̅̅ ̅(𝑡)  =

𝑣2𝑛+2+1

𝑣4𝑛+4−2
𝐴(𝑣) +

1

𝑣4𝑛+4−2
𝐵(𝑣) 

𝑦2̅̅ ̅(𝑡)  =
 1

𝑣4𝑛+4−2
𝐴(𝑣) +

𝑣2𝑛+2−1

𝑣4𝑛+4−2
𝐵(𝑣) 

                                                                                      (2.3) 

where 
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𝐴(𝑣) = 𝑣2𝑃(𝑣) +∑𝑣2(𝑛−𝑘)−1
𝑛−1

𝑘=0

𝛼𝑘  𝑎𝑛𝑑  𝐵(𝑣) = 𝑣
2𝑄(𝑣) +∑𝑣2(𝑛−𝑘)−1

𝑛−1

𝑘=0

𝛽𝑘 . 

Then 

𝑦1(𝑡) = 𝐴𝐹
−1 {

𝑣2𝑛+2 + 1

𝑣4𝑛+4 − 2
𝐴(𝑣) +

1

𝑣4𝑛+4 − 2
𝐵(𝑣)},          𝑦2(𝑡) = 𝐴𝐹

−1 {
 1

𝑣4𝑛+4 − 2
𝐴(𝑣) +

𝑣2𝑛+2 − 1

𝑣4𝑛+4 − 2
𝐵(𝑣)}. 

Example 2.1. Consider the following system, 

{
 𝑦′

1
(𝑡) = 𝑡 + ∫ [𝑦1(𝑥) + 𝑦2(𝑥)]𝑑𝑥 

𝑡

0
                

𝑦′
2
(𝑡) =

−1

12
𝑡4 − 2𝑡 + ∫ [(𝑡 − 𝑥)𝑦1(𝑥)]𝑑𝑥 

𝑡

0
  
                                                                              (2.4) 

with the initial conditions,  𝑦1(0) = 0 and   𝑦2(0) = 1. 

{
𝑣2 𝑦1̅̅ ̅(𝑣) − 𝑣 𝑦1(0) =

1

𝑣3
+

1

𝑣2
𝑦1̅̅ ̅(𝑣) +

1

𝑣2
𝑦2̅̅ ̅(𝑣) 

𝑣2 𝑦2̅̅ ̅(𝑣) − 𝑣 𝑦2(0) =
−1

12

4!

𝑣9
−

2

𝑣3
+

1

𝑣4
𝑦1̅̅ ̅(𝑣)      

                                                                        (2.5) 

{
𝑣11 𝑦2̅̅ ̅(𝑣) − 𝑣

5 𝑦1̅̅ ̅(𝑣) = 𝑣
10 − 2𝑣6 − 2 

𝑣 𝑦2̅̅ ̅(𝑣) + (𝑣
5 − 𝑣)𝑦1̅̅ ̅(𝑣) = 1                  

                                                                                     (2.6) 

The solution of these equations is 

𝑦1̅̅ ̅(𝑣) =  
2

𝑣5
,    𝑦1(𝑡) = 𝑡

2,           𝑦2̅̅ ̅(𝑣) =  
1

𝑣
−

2

𝑣5
     and      𝑦2(𝑡) = 1 − 𝑡

2. 

Example 2.2. Consider the following system, 

{
 𝑦′′

1
(𝑡) = −1 − 𝑡2 − sin 𝑡 + ∫ [𝑦1(𝑥) + 𝑦2(𝑥)]𝑑𝑥 

𝑡

0
                

𝑦′′
2
(𝑡) = −1 − 2 sin 𝑡 − cos 𝑡 + ∫ [𝑦1(𝑥) − 𝑦2(𝑥)]𝑑𝑥 

𝑡

0
      

                                                      (2.7) 

subjected to the initial conditions:  𝑦1(0) = 1,     𝑦
′ 1(0) = 1,      𝑦2(0) = 0,     𝑦

′ 2(0) = 2 . Applying the AF 

transform to both equations (2.7), the result is as follows: 

{
(𝑣6 − 1) 𝑦1̅̅ ̅(𝑣) − 𝑦2̅̅ ̅(𝑣) = 𝑣

5 + 𝑣3 − 𝑣 − 
2

𝑣3
− 

𝑣3

𝑣4+1
            

− 𝑦1̅̅ ̅(𝑣) + (𝑣
6 + 1) 𝑦2̅̅ ̅(𝑣) = 2𝑣

3 − 𝑣 − 
2𝑣3

𝑣4+1
−

2

𝑣3
− 

𝑣5

𝑣4+1
      

                                                  (2.8) 

According to (2.8), after some simplication and substitution, the following sets of relations are resulted: 

𝑦1(𝑡) = 𝑡 + cos 𝑡 , 𝑦2(𝑡) = 𝑡 + sin 𝑡. 

Now, we will solve this example by the homotopy perturbation method (HPM) [3]. To do this, we construct a 

homotopy function as the following form:  

{
H( 𝑦1(𝑡); 𝑝) = 𝑦1(𝑡) + 1 + 𝑡

2 + sin 𝑡 − 𝑃 ∫ [𝑦1(𝑥) + 𝑦2(𝑥)]𝑑𝑥 
𝑡

0
                

H( 𝑦2(𝑡); 𝑝) = 𝑦2(𝑡) + 1 + 2 sin 𝑡 + 2 cos 𝑡 − 𝑃 ∫ [𝑦1(𝑥) − 𝑦2(𝑥)]𝑑𝑥 
𝑡

0
    

                               (2.9) 

The embedding parameter p monotonically increases from 0 to 1. In order to apply this method the following 

expansion will be used 
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𝑦1(𝑡) = ∑𝑃𝑛
∞

𝑛=0

𝑦1𝑛(𝑡),            𝑦2(𝑡) = ∑𝑃𝑛
∞

𝑛=0

𝑦2𝑛(𝑡),                                                           (2.10)  

where 𝑦1𝑛(𝑡) and 𝑦2𝑛(𝑡), 𝑛 ≥ 0 are the components of  𝑦1(𝑡) 𝑎𝑛𝑑 𝑦2(𝑡)  that will be elegantly determined in the 

recursive manner. Substituting (2.10), in (2.9), and equating the terms with equal powers, the following sets of 

relations are resulted: 

𝑦10(𝑡) = 1 −
𝑡2

2
−
𝑡4

12
 + sin 𝑡,                                    

𝑦11(𝑡) = −3 + 𝑡 + 
3𝑡2

2
−

𝑡7

2520
 + 3cos 𝑡 −sin 𝑡,  

𝑦12(𝑡) = 2𝑡 −
𝑡3

3
−
𝑡5

60
−
𝑡5

60
+
𝑡6

360
−

𝑡8

20160
−

𝑡10

907200
 −2sin 𝑡,  

𝑦13(𝑡) = 6 − 2𝑡 − 3𝑡
2 +

𝑡3

3
+
𝑡4

4
−
𝑡5

60
−
𝑡6

120
+

𝑡7

2520
+

𝑡8

6720
 −

𝑡13

1556755200
− 6cos 𝑡 + 2sin 𝑡,  

𝑦20(𝑡) = −1 +
𝑡2

2
+ 2 sin 𝑡 + cos 𝑡,                                    

𝑦21(𝑡) = 1 − 𝑡 − 
𝑡2

2
+ 
𝑡3

3
−
𝑡5

60
−

𝑡7

2520
 +sin 𝑡 − cos 𝑡,  

𝑦22(𝑡) = 2 + 4𝑡 − 𝑡
2 − 

2𝑡3

3
+
𝑡4

12
+
𝑡5

30
−
𝑡6

360
+

𝑡8

20160
 −4sin 𝑡 − 2 cos 𝑡,  

𝑦23(𝑡) = −2 + 2𝑡 + 𝑡
2 − 

𝑡3

3
−
𝑡4

12
+
𝑡5

60
+
𝑡6

360
−

𝑡7

2520
−

𝑡11

9979200
−

𝑡13

1556755200
 +2𝑐𝑜𝑠 𝑡 − 2 sin 𝑡,  

and so on. Therefore, the solutions by the HPM with three terms will be determined as: 

{
 𝑦1(𝑡) = 4 + 𝑡 − 2𝑡

2 +
𝑡4

6
−

𝑡6

180
+

𝑡8

10080
−

𝑡10

907200
− 

𝑡13

1556755200
− 3𝑐𝑜𝑠 𝑡,                

 𝑦2(𝑡) = 5𝑡 −
2𝑡3

3
+
𝑡5

30
−

𝑡7

1260
+

𝑡9

90720
−

𝑡11

9979200
− 

𝑡13

1556755200
− 3𝑠𝑖𝑛 𝑡.               

                  (2.11) 

We substituting cost and sint with Taylor series in (2.11), the following sets of relations are resulted 

𝑦1(𝑡) = 𝑡 + cos 𝑡   and  𝑦2(𝑡) = 𝑡 + sin 𝑡 

Equal to solutions of (2.8) exactly. 

3. Conclusion 

In this work, we have applied the Reconstruction of Variational Iteration Method AF transform for solving the 

systems of Volterra integro-differential equations. In our method knowing the variational theory is not essential 

while it was needed in the variational iteration method. It is important to point out that some other methods should 

be applied for systems with separable or difference kernels. Whereas, the AF transform can be used for solving 

systems of Volterra integro- differential equations with any kind of kernels. By comparing the results of other 

numerical methods such as homotopy perturbation method(HPM) [3], we conclude that the AF transform is more 

accurate, fast and reliable. Besides , AF transform does not require small parameters; thus, the limitations of the 
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traditional perturbation methods can be eliminated, and the calculations are also simple and straight-forward. These 

advantages has been confirmed by employing two examples. Therefore, this method is a very effective tool for 

calculating the exact solu- tions of integro-differential equations systems. 
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