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Abstract: In the paper, we deal mainly with some new relations of q-Genocchi polynomials.
From those relations, we deduce that these relations can be stated by symmetric group of degree
n, denoted by S, .
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INTRODUCTION
Throughout of the paper, we make use of the following notations:
N:={1,2,3,---}and N":= NU{0}.
Here C denotes the set of complex numbers, Z = denotes the ring of p-adic rational
integers, Q denotes the field of rational numbers, Q , denotes the field of p-adic rational numbers,
and C denotes the completion of algebraic closure of Q , where p isa fixed odd prime number.

For d an odd positive number with (p,d)=1, set
X=X, =limZ/dp"Z, X, = Z,

n

and
a+dp"Z, :{XE X | x=a(mod dp”)}



where ae Z liesin 0<a<dp". See, for details, [1-18].
The p-adic normalized absolute value is given by |p|p =p™*. Note that "q" can be

considered as an indeterminate a complex number g € C with |q| <1, or a p-adic number g C,
1

with -1 < p " and q* =exp(xlogq) for x|, <1.

We now give the definition of g-number, as follows:

X

qg -1
[x],=1a-1
X, ifqg=1.

, ifg=l

See [1-18,20].
The g-Volkenborn integral (or sometimes called p-adic g-integral on Z ) of a function

f eUD(Z,,) is originally defined by Kim [16], as follows:

1,(f)= j (X)d gty (%) = lim

H{ ] Zf (1.1)

The fermionic p-adic g-deformed integral on Z is also defined by Kim [10,15], as

follows:
|_q(f)=jZ f(x)d g ( _—]|. Zf )(-1)*q (1.2)

Because of the Eqg. (1.1) and the Eq.(1.2), it can be written symbolically as
limly (f)=1_,(f).
q—--q

By the Eq. (1.2), we have the following equality which plays extremely important role in
order to get the new generalizations of some special polynomials:
al_o(f)+14(f)=[2], (0)
where f (x) = f(x+1). See [1-20] for a systematic works about these topics.
In [4], Araci and Acikgoz gave the generating function of g-Genocchi polynomials G, ,(x)
, With respect to u_,, as follows:

ZGnq<x> —tj qye “hda,(y) (1.3)

_ m t{m-+x]
= Z]qth:;J(—l) e 9.
If we take x=0 into the Eq. (1.3), it becomes G, ,(0):=G,, that are called n-th g-
Genocchi number. As g approaches to 1 in the Eq. (1.3) gives
limG, ,(x):= G, ()
g
where G, (x) is known as familiar Genocchi polynomials cf. [3],[4],[5].[7],[20].

Recently, Kim et al.[13] have introduced a beautiful method in order to construct
symmetric identities of some well known special polynomials under symmetric groups. The
symmetric identities of g-Euler polynomials and g-Bernoulli polynomials under symmetric group



of degree n was also given by Dolgy et al.[9] and Kim et al.[14]. Moreover, Duran et al.[7]

obtained symmetric identities of gq-Genocchi polynomials under symmetric group of degree four.
Now also, we extend symmetric identities of g-Genocchi polynomials under symmetric group of
degree four to symmetric identities of g-Genocchi polynomials under symmetric group of degree
n using the useful method of Kim et al.[14] which we state in the next section.

ON THE SYMMETRIC RELATIONS OF g-GENOCCHI POLYNOMIALS UNDER S
Let w, e N with w; =1(mod2) for ie{1,2,---,n}. Then, by the Egs. (1.2) and (1.3), we

have

RN () (2.1)

p -q !

g S

i#j

B T
:Tllmz Z( 1)™e = q

N—00 - 0 y=0

Applying

: HZ( JZJ

1=1 k=0

to the both sides of the Eq. (2.1), we derive that

ﬁ““'z‘l( ){ZJ

I=1 k=0

(2.2)



We see that the Eq. (2.2) is invariant under any permutation o € S . Therefore, we state as

follows:

s=1
AR
-l HWO' ]y{H (] ]XHNO' n {ﬁwo i ]
_y[HWdDJ {[ ) (i) ()JZ_;, oo y
X z q € # Wo—(l) o2) VYo (n-1) (¥)

inwhich o liesin S, . From this, we have the following theorem.

Theorem 1 Let w, e N with w, =1(mod2) for i e{1,2,---,n} . Then the following

2 ni Wyt [ZWU(S)}
ﬁH 2, (b

1=1 kl =0

ottt

holds true for any o €S,,.

Ydu (y)

o(1) (7(2) a(n—l)
—-q

From the definition of g-number [x]q , We have

i o ]

j=1 =1 !—1
i#]
q
n-1 B
w w
=1 TTw; || y+wox+—k +.+— kn_l}
=t gL W Wi g2 -1
=T
—_ n
= TIw | | y+w, X+Z K,
| j=1 dgL =1 W W1W2'“Wn—1

q
At sy 0, ) (2.4)

It directly follows from the Eq. (2.4) that



Hence, by Theorem 1 and (2.5), we get the following theorem.

Theorem 2 Let w, e N with w; =1(mod2) for ie{1,2,---,n}. Then the following

n-1 m o
) |:]j_=]1: Wa(j):|q n1 Yoyt [lea(s)] o Wg(n)
[2] m+1 H Z (_1) N Gm+1,quW2"'Wn—l W"(”)X + Z— kj
q

1= k=0 =1 W,y

holds true forany o €S, and m=>0.

It follows from the definition of [x]q and binomial theorem that

{y+wnx+nim J}

iz W g2
m-I
m-I
_a(m [Wn ]q n| n-1
=2 [ Tw |k
| n-1 1 J
1=0 HW j=1| i=l
. iz w
_ i i#] g
j=1 q
n-1 na
Iw, ] W kj
i=1 1%

n-1
ij]
j=

_y[
Applying [ q " du sz, (¥) 10 the both sides of the above gives
. ]

- n-1
P =t T VoW g
m-|
m-I
mm [Wn] n-1| n-1
— q
=S S
1=0 j=1| i=1
Wj i] an
j=1 q

(2.5)

(2.6)

(2.7)
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By the Eq. (2.7), we have

alinlge®

j=1 1=1 kl
y[ﬁwj] B n-1 W
- W, X)
m(m 2 n-1 mel 141 quWZ Wn—l( n
= — W. W
g(ll[z]q 1,_[ ’L[ 'l I+1
n-1 ol m-I
n-1 w1 [ZWIJ Wy = gwi kj n-1| n-1
X (_1) 1=1 q 1= Wi k.
1#] an
. I G (W X)
mim) 2 1 m-l papg Y2 N0
= I . . U yeeny W I
;(I j[z]q |:];1[W1j|q [Wn]q | +1 m,qW” (W 2 ll )
where
Umq (Wl’WZ’ ' n 1“)

n-1 il Y m-I
n-1 W1 {Z J IW”Z[HWiJkJ n-1| n-1
—HZ( 1) 1=1 J=10 iz \N| kj .

I=1 k=0 j=1
Therefore, by (2.8), we obtain the following theorem.
Theorem 3 Let w, e N with w, =1(mod?2) for ie{1,2,---,n} and let m>0. Then the

following expression

I G (w x)
2 3 (m)|l nd ml g oY@ o (-1 o(n)
— W, . w ' U W_., I~ |
[z]q ;( | j|:]i_!: o(])}q[ a(n)}q | +1 Wer () ( o(1) 0'(2) o-(n -1) | )

m.q

holds true for some o €S,.
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