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Abstract: This paper is devoted to find the form of the solutions of the following rational difference equations:  

 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−6

𝑥𝑛−5(±1+𝑥𝑛𝑥𝑛−6)
,    𝑛 = 0,1, . . ., 

where the initial conditions 𝑥−6, 𝑥−5, 𝑥−4, 𝑥−3, 𝑥−2, 𝑥−1, 𝑥0 are arbitrary positive real numbers. Also, we give specific 

form of the solutions of two cases of this equation.  
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1 Introduction 

Our aim in this paper is to investigate the behavior of the solution of the following nonlinear difference equation  

 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−6

𝑥𝑛−5(±1+𝑥𝑛𝑥𝑛−6)
,    𝑛 = 0,1, . . ., (1) 

where the initial conditions 𝑥−6, 𝑥−5, 𝑥−4, 𝑥−3, 𝑥−2, 𝑥−1, 𝑥0 are arbitrary positive real numbers. 

 

The study and solution of nonlinear rational recursive sequence of high order is quite challenging and rewarding. 

Recently, there has been a lot of interest in studying the qualitative properties of rational recursive sequences, 

Furthermore diverse nonlinear trend occurring in science and engineering can be modeled by such equations and the 

solution about such equations offer prototypes towards the development of the theory. However, there have not been 

any suitable general method to deal with the global behavior of rational difference equations of high order so far. 

Therefore, the study of rational difference equations of order greater than one is worth further consideration. 

Many researchers have investigated the behavior of the solution of difference equations, for example, 

Elsayed et al. [23] has obtained results concerning the dynamics and solution of the rational difference equation  

 𝑥𝑛+1 =
𝑥𝑛−1𝑥𝑛−5

𝑥𝑛−3(±1±𝑥𝑛−1𝑥𝑛−5)
. 

 

Elsayed et al. [27] has obtained results concerning The dynamics and the solutions of the rational difference equation  

 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−4

𝑥𝑛−3(±1±𝑥𝑛𝑥𝑛−4)
. 
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Aloqeili [3] has obtained the solutions of the difference equation  

 𝑥𝑛+1 =
𝑥𝑛−1

𝑎−𝑥𝑛𝑥𝑛−1
. 

Simsek et al. [37] obtained the solution of the difference equation  

 𝑥𝑛+1 =
𝑥𝑛−3

1+𝑥𝑛−1
 

 Çinar [7,8,9] got the solutions of the following difference equation  

 𝑥𝑛+1 =
𝑥𝑛−1

1+𝑎𝑥𝑛𝑥𝑛−1
, 𝑥𝑛+1 =

𝑥𝑛−1

−1+𝑎𝑥𝑛𝑥𝑛−1
, 𝑥𝑛+1 =

𝑎𝑥𝑛−1

1+𝑏𝑥𝑛𝑥𝑛−1
 

In [28], Ibrahim got the form of the solution of the rational difference equation  

 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−2

𝑥𝑛−1(𝑎+𝑏𝑥𝑛𝑥𝑛−2)
 

 Karatas et al. [30] got the solution of the difference equation  

 𝑥𝑛+1 =
𝑥𝑛−5

1+𝑥𝑛−2𝑥𝑛−5
 

Here, we recall some notations and results which will be useful in our investigation. Let 𝐼 be some interval of real 

numbers and let  

 𝑓: 𝐼𝑘+1 → 𝐼, 

 be a continuously differentiable function. Then for every set of initial conditions 𝑥−𝑘 , 𝑥−𝑘+1, 𝑥−𝑘+2, . . . , 𝑥0 ∈ 𝐼, the 

difference equation  

 𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥𝑛−𝑘),    𝑛 = 0,1, . . ., (2) 

 has a unique solution {𝑥𝑛}𝑛=−𝑘
∞ . 

 

Definition 1. (Equilibrium Point) A point 𝑥̅ ∈ 𝐼 is called an equilibrium point of Eq. (2) if 𝑥̅ = 𝑓(𝑥̅, 𝑥̅, . . . , 𝑥̅). That 

is, 𝑥𝑛 = 𝑥̅ for 𝑛 ≥ 0, is a solution of Eq. (2), or equivalently, 𝑥̅ is a fixed point of 𝑓. 

 

 Definition 2. (Stability) 

 • The equilibrium point 𝑥̅  of Eq. (2) is locally stable if for every 𝜀 > 0 , there exists 𝛿 > 0  such that for all 

𝑥−𝑘, 𝑥−𝑘+1, 𝑥−𝑘+2, . . . , 𝑥0 ∈ 𝐼, with  

 |𝑥−𝑘 − 𝑥̅| + |𝑥−𝑘+1 − 𝑥̅| + |𝑥−𝑘+2 − 𝑥̅|+. . . +|𝑥0 − 𝑥̅| < 𝛿, 

 we have |𝑥𝑛 − 𝑥̅| < 𝜀, for all 𝑛 ≥ −𝑘. 

• The equilibrium point 𝑥̅ of Eq. (2) is locally asymptotically stable if 𝑥̅ is locally stable solution of Eq. (2) and there 

exists 𝛾 > 0, such that for all 𝑥−𝑘, 𝑥−𝑘+1, 𝑥−𝑘+2, . . . , 𝑥0 ∈ 𝐼, with  

 |𝑥−𝑘 − 𝑥̅| + |𝑥−𝑘+1 − 𝑥̅| + |𝑥−𝑘+2 − 𝑥̅|+. . . +|𝑥0 − 𝑥̅| < 𝛿, 

 we have lim𝑛→∞𝑥𝑛 = 𝑥̅. 

• The equilibrium point 𝑥̅ of Eq. (2) is global attractor if for all 𝑥−𝑘 , 𝑥−𝑘+1, . . . , 𝑥0 ∈ 𝐼 we have  

 lim
𝑛→∞

𝑥𝑛 = 𝑥̅. 

• The equilibrium point 𝑥̅ of Eq. (2) is globally asymptotically stable if 𝑥̅ is locally stable, and 𝑥̅ is also a global 

attractor of Eq. (2). 

 • The equilibrium point 𝑥̅ of Eq. (2) is unstable if 𝑥̅ is not locally stable.  

The linearized equation of Eq. (2) about the equilibrium 𝑥̅ is the linear difference equation  

 𝑦𝑛+1 = ∑𝑘
𝑖=0

𝜕𝑓(𝑥̅,𝑥̅,...,𝑥̅)

𝜕𝑥𝑛−𝑖
𝑦𝑛−𝑖 

Theorem 1. Assume that 𝑝, 𝑞 ∈ ℝ and 𝑘 ∈ {0,1,2, . . . }. Then |𝑝| + |𝑞| < 1 is a sufficient condition for the asymptotic 

stability of the difference equation  
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 𝑥𝑛+1 + 𝑝𝑥𝑛 + 𝑞𝑥𝑛−𝑘 = 0, 𝑛 = 0,1, . . .. 

 

Remark 1. The theorem can be easily extended to a general linear equations of the form  

 𝑥𝑛+𝑘 + 𝑝1𝑥𝑛+𝑘−1+. . . +𝑝𝑘𝑥𝑛 = 0,    𝑛 = 0,1, . . ., (3) 

 where 𝑝1, 𝑝2, . . . , 𝑝𝑘 ∈ ℝ  and 𝑘 ∈ {0,1,2, . . . } . Then Eq. (3) is asymptotically stable provided that 

∑𝑘
𝑖=0 |𝑝𝑖| < 1. 

 

Our goal in this section is to find a specific form of the solutions of some special cases of Eq. (1) when , 𝑎, 𝑏, 𝑐 and 𝑑 

are integers and give numerical examples of each case.  

2 First Case: On the Difference Equation 𝒙𝒏+𝟏 =
𝒙𝒏𝒙𝒏−𝟔

𝒙𝒏−𝟓(𝟏+𝒙𝒏𝒙𝒏−𝟔)
 

In this subsection we study the following special case of Eq. (1): 

 

 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−6

𝑥𝑛−5(1+𝑥𝑛𝑥𝑛−6)
,    𝑛 = 0,1, . . ., (4) 

where the initial conditions 𝑥−6, 𝑥−5, 𝑥−4, 𝑥−3, 𝑥−2, 𝑥−1, 𝑥0 are arbitrary nonzeros real numbers. 

Theorem 2. Let {𝑥𝑛}𝑛=−4
∞  be a solution of Eq. (4). Then for 𝑛 = 0,1, . .., 

 

𝑥12𝑛−6 = 𝑥−6 ∏𝑛−1
𝑖=0 (

1+(12𝑖)𝑥−6𝑥0

1+(12𝑖+6)𝑥−6𝑥0
), 𝑥12𝑛−5 = 𝑥−5 ∏𝑛−1

𝑖=0 (
1+(12𝑖+1)𝑥−6𝑥0

1+(12𝑖+7)𝑥−6𝑥0
),

𝑥12𝑛−4 = 𝑥−4 ∏𝑛−1
𝑖=0 (

1+(12𝑖+2)𝑥−6𝑥0

1+(12𝑖+8)𝑥−6𝑥0
), 𝑥12𝑛−3 = 𝑥−3 ∏𝑛−1

𝑖=0 (
1+(12𝑖+3)𝑥−6𝑥0

1+(12𝑖+9)𝑥−6𝑥0
),

𝑥12𝑛−2 = 𝑥−2 ∏𝑛−1
𝑖=0 (

1+(12𝑖+4)𝑥−6𝑥0

1+(12𝑖+10)𝑥−6𝑥0
), 𝑥12𝑛−1 = 𝑥−1 ∏𝑛−1

𝑖=0 (
1+(12𝑖+5)𝑥−6𝑥0

1+(12𝑖+11)𝑥−6𝑥0
),

𝑥12𝑛 = 𝑥0 ∏𝑛−1
𝑖=0 (

1+(12𝑖+6)𝑥−6𝑥0

1+(12𝑖+12)𝑥−6𝑥0
), 𝑥12𝑛+1 =

𝑥−6𝑥0

𝑥−5(1+𝑥−6𝑥0)
∏𝑛−1

𝑖=0 (
1+(12𝑖+7)𝑥−6𝑥0

1+(12𝑖+13)𝑥−6𝑥0
),

𝑥12𝑛+2 =
𝑥−6𝑥0

𝑥−4(1+2𝑥−6𝑥0)
∏𝑛−1

𝑖=0 (
1+(12𝑖+8)𝑥−6𝑥0

1+(12𝑖+14)𝑥−6𝑥0
), 𝑥12𝑛+3 =

𝑥−6𝑥0

𝑥−3(1+3𝑥−6𝑥0)
∏𝑛−1

𝑖=0 (
1+(12𝑖+9)𝑥−6𝑥0

1+(12𝑖+15)𝑥−6𝑥0
),

𝑥12𝑛+4 =
𝑥−6𝑥0

𝑥−2(1+4𝑥−6𝑥0)
∏𝑛−1

𝑖=0 (
1+(12𝑖+10)𝑥−6𝑥0

1+(12𝑖+16)𝑥−6𝑥0
), 𝑥12𝑛+5 =

𝑥−6𝑥0

𝑥−1(1+5𝑥−6𝑥0)
∏𝑛−1

𝑖=0 (
1+(12𝑖+11)𝑥−6𝑥0

1+(12𝑖+17)𝑥−6𝑥0
).

 

 

 Proof: We use an inductive proof for this rational recursive sequences. It is easy to see that for 𝑛 = 0, the result 

holds. Suppose that 𝑛 > 0 and that the assumption is satisfied for 𝑛 − 1. That is; 

 

 

𝑥12𝑛−18 = 𝑥−6 ∏𝑛−2
𝑖=0 (

1+(12𝑖)𝑥−6𝑥0

1+(12𝑖+6)𝑥−6𝑥0
), 𝑥12𝑛−17 = 𝑥−5 ∏𝑛−2

𝑖=0 (
1+(12𝑖+1)𝑥−6𝑥0

1+(12𝑖+7)𝑥−6𝑥0
),

𝑥12𝑛−16 = 𝑥−4 ∏𝑛−2
𝑖=0 (

1+(12𝑖+2)𝑥−6𝑥0

1+(12𝑖+8)𝑥−6𝑥0
), 𝑥12𝑛−15 = 𝑥−3 ∏𝑛−2

𝑖=0 (
1+(12𝑖+3)𝑥−6𝑥0

1+(12𝑖+9)𝑥−6𝑥0
),

𝑥12𝑛−14 = 𝑥−2 ∏𝑛−2
𝑖=0 (

1+(12𝑖+4)𝑥−6𝑥0

1+(12𝑖+10)𝑥−6𝑥0
), 𝑥12𝑛−13 = 𝑥−1 ∏𝑛−2

𝑖=0 (
1+(12𝑖+5)𝑥−6𝑥0

1+(12𝑖+11)𝑥−6𝑥0
),

𝑥12𝑛−12 = 𝑥0 ∏𝑛−2
𝑖=0 (

1+(12𝑖+6)𝑥−6𝑥0

1+(12𝑖+12)𝑥−6𝑥0
), 𝑥12𝑛−11 =

𝑥−6𝑥0

𝑥−5(1+𝑥−6𝑥0)
∏𝑛−2

𝑖=0 (
1+(12𝑖+7)𝑥−6𝑥0

1+(12𝑖+13)𝑥−6𝑥0
),

𝑥12−10 =
𝑥−6𝑥0

𝑥−4(1+2𝑥−6𝑥0)
∏𝑛−2

𝑖=0 (
1+(12𝑖+8)𝑥−6𝑥0

1+(12𝑖+14)𝑥−6𝑥0
), 𝑥12𝑛−9 =

𝑥−6𝑥0

𝑥−3(1+3𝑥−6𝑥0)
∏𝑛−2

𝑖=0 (
1+(12𝑖+9)𝑥−6𝑥0

1+(12𝑖+15)𝑥−6𝑥0
),

𝑥12𝑛−8 =
𝑥−6𝑥0

𝑥−2(1+4𝑥−6𝑥0)
∏𝑛−2

𝑖=0 (
1+(12𝑖+10)𝑥−6𝑥0

1+(12𝑖+16)𝑥−6𝑥0
), 𝑥12𝑛−7 =

𝑥−6𝑥0

𝑥−1(1+5𝑥−6𝑥0)
∏𝑛−2

𝑖=0 (
1+(12𝑖+11)𝑥−6𝑥0

1+(12𝑖+17)𝑥−6𝑥0
).
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Now, using the main Eq. (4), one has 

 

𝑥12𝑛−6 =
𝑥12𝑛−7𝑥12𝑛−13

𝑥12𝑛−12(1+𝑥12𝑛−7𝑥12𝑛−13)

=

𝑥−6𝑥0
𝑥−1(1+5𝑥−6𝑥0)

∏𝑛−2
𝑖=0 (

1+(12𝑖+11)𝑥−6𝑥0
1+(12𝑖+17)𝑥−6𝑥0

)𝑥−1 ∏𝑛−2
𝑖=0 (

1+(12𝑖+5)𝑥−6𝑥0
1+(12𝑖+11)𝑥−6𝑥0

)

𝑥0 ∏𝑛−2
𝑖=0 (

1+(12𝑖+6)𝑥−6𝑥0
1+(12𝑖+12)𝑥−6𝑥0

)(1+
𝑥−6𝑥0

𝑥−1(1+5𝑥−6𝑥0)
∏𝑛−2

𝑖=0 (
1+(12𝑖+11)𝑥−6𝑥0
1+(12𝑖+17)𝑥−6𝑥0

)𝑥−1 ∏𝑛−2
𝑖=0 (

1+(12𝑖+5)𝑥−6𝑥0
1+(12𝑖+11)𝑥−6𝑥0

))

=

𝑥−6
(1+5𝑥−6𝑥0)

∏𝑛−2
𝑖=0 (

1+(12𝑖+5)𝑥−6𝑥0
1+(12𝑖+17)𝑥−6𝑥0

)

∏𝑛−2
𝑖=0 (

1+(12𝑖+6)𝑥−6𝑥0
1+(12𝑖+12)𝑥−6𝑥0

)(1+
𝑥−6𝑥0

(1+5𝑥−6𝑥0)
∏𝑛−2

𝑖=0 (
1+(12𝑖+5)𝑥−6𝑥0

1+(12𝑖+17)𝑥−6𝑥0
))

= ∏𝑛−2
𝑖=0 (

1+(12𝑖+12)𝑥−6𝑥0

1+(12𝑖+6)𝑥−6𝑥0
)

𝑥−6
(1+5𝑥−6𝑥0)

∏𝑛−2
𝑖=0 (

1+(12𝑖+5)𝑥−6𝑥0
1+(12𝑖+17)𝑥−6𝑥0

)

(1+
𝑥−6𝑥0

(1+5𝑥−6𝑥0)
∏𝑛−2

𝑖=0 (
1+(12𝑖+5)𝑥−6𝑥0

1+(12𝑖+17)𝑥−6𝑥0
))

= ∏𝑛−2
𝑖=0 (

1+(12𝑖+12)𝑥−6𝑥0

1+(12𝑖+6)𝑥−6𝑥0
)

𝑥−6
1

1+(12𝑛−7)𝑥−6𝑥0

(1+
𝑥−6𝑥0

(1+(12𝑛−7)𝑥−6𝑥0
))

= ∏𝑛−2
𝑖=0 (

1+(12𝑖+12)𝑥−6𝑥0

1+(12𝑖+6)𝑥−6𝑥0
)

𝑥−6

1+(12𝑛−6)𝑥−6𝑥0
.

 

 

Hence, we have 

 

 𝑥12𝑛−6 = 𝑥−6 ∏𝑛−1
𝑖=0 (

1+(12𝑖)𝑥−6𝑥0

1+(12𝑖+6)𝑥−6𝑥0
).  

 

Similarly, using the main Eq. (4), one has 
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𝑥12𝑛−5 =
𝑥12𝑛−6𝑥12𝑛−12

𝑥12𝑛−11(1+𝑥12𝑛−6𝑥12𝑛−12)

=
𝑥−6 ∏𝑛−1

𝑖=0 (
1+(12𝑖)𝑥−6𝑥0

1+(12𝑖+6)𝑥−6𝑥0
)𝑥0 ∏𝑛−2

𝑖=0 (
1+(12𝑖+6)𝑥−6𝑥0

1+(12𝑖+12)𝑥−6𝑥0
)

𝑥−6𝑥0
𝑥−5(1+𝑥−6𝑥0)

∏𝑛−2
𝑖=0 (

1+(12𝑖+7)𝑥−6𝑥0
1+(12𝑖+13)𝑥−6𝑥0

)(1+𝑥−6 ∏𝑛−1
𝑖=0 (

1+(12𝑖)𝑥−6𝑥0
1+(12𝑖+6)𝑥−6𝑥0

)𝑥0 ∏𝑛−2
𝑖=0 (

1+(12𝑖+6)𝑥−6𝑥0
1+(12𝑖+12)𝑥−6𝑥0

))

= 𝑥−5(1 + 𝑥−6𝑥0) ∏𝑛−2
𝑖=0 (

1+(12𝑖+13)𝑥−6𝑥0

1+(12𝑖+7)𝑥−6𝑥0
)

(
1+(12𝑛−12)𝑥−6𝑥0
1+(12𝑛−6)𝑥−6𝑥0

) ∏𝑛−2
𝑖=0 (

1+(12𝑖)𝑥−6𝑥0
1+(12𝑖+12)𝑥−6𝑥0

)

(1+𝑥−6𝑥0(
1+(12𝑛−12)𝑥−6𝑥0
1+(12𝑛−6)𝑥−6𝑥0

) ∏𝑛−2
𝑖=0 (

1+(12𝑖)𝑥−6𝑥0
1+(12𝑖+12)𝑥−6𝑥0

))

= 𝑥−5 ∏𝑛−1
𝑖=0 (

1+(12𝑖+1)𝑥−6𝑥0

1+(12𝑖+7)𝑥−6𝑥0
)

1+𝑥−6𝑥0

1+(12𝑛−5)𝑥−6𝑥0
.

 

 

Hence, we have 

 

 𝑥12𝑛−5 = 𝑥−5 ∏𝑛−1
𝑖=0 (

1+(12𝑖+1)𝑥−6𝑥0

1+(12𝑖+7)𝑥−6𝑥0
).  

 

Similarly, one can easily obtain the other relations. Thus, the proof is completed.  

Theorem 3. Eq. (4) has one equilibrium point 𝑥̅ = 0 and this equilibrium point is not locally asymptotically stable. 

Proof. In this section we investigate the local stability character of the solutions of Eq. (4). Equation (4) has a unique 

positive equilibrium point and is given by  

 𝑥̅ =
𝑥̅2

𝑥̅(1+𝑥̅2)
=

𝑥̅

1+𝑥̅2, 

 or also  

 1 = 1 + 𝑥̅2, 

 then the unique equilibrium point is given by 𝑥̅ = 0. 

Define the following function  

 
𝑓: (0, ∞)3 → (0, ∞)

𝑓(𝑢, 𝑣, 𝑤) =
𝑢𝑤

𝑣(1+𝑢𝑤)
.

 

Therefore it follows that 

 𝑓𝑢(𝑢, 𝑣, 𝑤) =
𝑤

𝑣(1+𝑢𝑤)2 ,    𝑓𝑣(𝑢, 𝑣, 𝑤) = −
𝑢𝑤

𝑣2(1+𝑢𝑤)
,    𝑓𝑤(𝑢, 𝑣, 𝑤) =

𝑢

𝑣(1+𝑢𝑤)2. 

Then 

 𝑓𝑢(𝑥̅, 𝑥̅, 𝑥̅) =
1

(1+𝑥̅2)2 = 1,    𝑓𝑣(𝑥̅, 𝑥̅, 𝑥̅) = −
1

(1+𝑥̅2)
= −1,    𝑓𝑤(𝑥̅, 𝑥̅, 𝑥̅) =

1

(1+𝑥̅2)2 = 1. 

The linearized equation of Eq. (4) about 𝑥̅ is 

 𝑦𝑛+1 − 𝑦𝑛−6 + 𝑦𝑛−5 − 𝑦𝑛 = 0. (5) 

It follows from Theorem 1 that Eq. (5) is not asymptotically stable. The proof is complete. 

For confirming the results of this section, we consider numerical example for 𝑥−6 = 1, 𝑥−5 = 2, 𝑥−4 =

3, 𝑥−3 = 4, 𝑥−2 = 5, 𝑥−1 = 6, 𝑥0 = 7 ,(See Figure 1).  
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Figure  1 

   

 

 

 

 

 

3 Second Case: On the Difference Equation 𝒙𝒏+𝟏 =
𝒙𝒏𝒙𝒏−𝟔

𝒙𝒏−𝟓(−𝟏+𝒙𝒏𝒙𝒏−𝟔)
 

In this subsection we study the following special case of Eq. (1): 

 

 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−6

𝑥𝑛−5(−1+𝑥𝑛𝑥𝑛−6)
,    𝑛 = 0,1, . . ., (6) 

where the initial conditions 𝑥−6, 𝑥−5, 𝑥−4, 𝑥−3, 𝑥−2, 𝑥−1, 𝑥0 are arbitrary nonzeros real numbers. 

Theorem 4. Let {𝑥𝑛}𝑛=−4
∞  be a solution of Eq. (6). Then the solution of Eq. (6) is bounded and periodic of period 12 

given by:  

 

𝑥12𝑛−6 = 𝑥−6, 𝑥12𝑛−5 = 𝑥−5, 𝑥12𝑛−4 = 𝑥−4, 𝑥12𝑛−3 = 𝑥−3,

𝑥12𝑛−2 = 𝑥−2, 𝑥12𝑛−1 = 𝑥−1, 𝑥12𝑛 = 𝑥0, 𝑥12𝑛+1 =
𝑥0𝑥−6

𝑥−5(−1+𝑥0𝑥−6)
,

𝑥12𝑛+2 =
𝑥0𝑥−6

𝑥−4
, 𝑥12𝑛+3 =

𝑥0𝑥−6

𝑥−3(−1+𝑥0𝑥−6)
, 𝑥12𝑛+4 =

𝑥0𝑥−6

𝑥−2
, 𝑥12𝑛+5 =

𝑥0𝑥−6

𝑥−1(−1+𝑥0𝑥−6)
.

 

 

 Proof. For 𝑛 = 0, the result holds. Now suppose that our assumption holds for 𝑛 − 1. That is;  

 

𝑥12𝑛−18 = 𝑥−6, 𝑥12𝑛−17 = 𝑥−5, 𝑥12𝑛−16 = 𝑥−4, 𝑥12𝑛−15 = 𝑥−3,

𝑥12𝑛−14 = 𝑥−2, 𝑥12𝑛−13 = 𝑥−1, 𝑥12𝑛−12 = 𝑥0, 𝑥12𝑛−11 =
𝑥0𝑥−6

𝑥−5(−1+𝑥0𝑥−6)
,

𝑥12𝑛−10 =
𝑥0𝑥−6

𝑥−4
, 𝑥12𝑛−9 =

𝑥0𝑥−6

𝑥−3(−1+𝑥0𝑥−6)
, 𝑥12𝑛−8 =

𝑥0𝑥−6

𝑥−2
, 𝑥12𝑛−7 =

𝑥0𝑥−6

𝑥−1(−1+𝑥0𝑥−6)
.

 

 

Now it follows from Eq. (6) that 
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𝑥12𝑛−6 =
𝑥12𝑛−7𝑥12𝑛−13

𝑥12𝑛−12(−1+𝑥12𝑛−7𝑥12𝑛−13)
=

𝑥0𝑥−6
𝑥−1(−1+𝑥0𝑥−6)

𝑥−1

𝑥0(−1+
𝑥0𝑥−6

𝑥−1(−1+𝑥0𝑥−6)
𝑥−1)

=

𝑥−6
(−1+𝑥0𝑥−6)

(−1+
𝑥0𝑥−6

(−1+𝑥0𝑥−6)
)

=

𝑥−6
(−1+𝑥0𝑥−6)

(
1

(−1+𝑥0𝑥−6)
)

= 𝑥−6

 

Similarly  

𝑥12𝑛−5 =
𝑥12𝑛−6𝑥12𝑛−12

𝑥12𝑛−11(−1+𝑥12𝑛−6𝑥12𝑛−12)
=

𝑥−6𝑥0
𝑥0𝑥−6

𝑥−5(−1+𝑥0𝑥−6)
(−1+𝑥−6𝑥0)

= 𝑥−5  

 

 

𝑥12𝑛−4 =
𝑥12𝑛−5𝑥12𝑛−11

𝑥12𝑛−10(−1+𝑥12𝑛−5𝑥12𝑛−11)
=

𝑥−5
𝑥0𝑥−6

𝑥−5(−1+𝑥0𝑥−6)

𝑥0𝑥−6
𝑥−4

(−1+𝑥−5
𝑥0𝑥−6

𝑥−5(−1+𝑥0𝑥−6)
)

=

1

(−1+𝑥0𝑥−6)
1

𝑥−4
(−1+

𝑥0𝑥−6
(−1+𝑥0𝑥−6)

)
=

𝑥−4
(−1+𝑥0𝑥−6)

(
1

(−1+𝑥0𝑥−6)
)

= 𝑥−4

 

Similarly, one can easily obtain the other relations. Thus, the proof is completed.  

Theorem 5. Eq. (6) has tree equilibrium points which are 0, ±√2 and these equilibrium points are not locally 

asymptotically stable. 

Proof. As the proof of Theorem 3 and will be omitted. 

For confirming the results of this section, we consider numerical example for 𝑥−6 = 1, 𝑥−5 = 2, 𝑥−4 = 3, 𝑥−3 =

4, 𝑥−2 = 5, 𝑥−1 = 6, 𝑥0 = 7, (See Figure 2).  

  

 

    

  

Figure 2  

   

4 Conclusion 

This paper discussed local stability, the solutions of some special cases of Eq. (1) and gave numerical examples of 

each case. 
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