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Abstract: The discovery of new nanomaterials adds new dimensions to industry, electronics,
pharmaceutical and biological therapeutics. In this article, authors encountered the closed forms
M-polynomials of nanostructures such 2D-lattice, nanotube and nanotorus of TUC,Cg[p, q] for
some degree-based topological indices. These indices are numerical tendency that often depict
quantitative structural activity/property/toxicity/relationships and correlate certain physico-
chemical properties, such boiling point, stability, and strain energy of the respective
nanomaterial.
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INTRODUCTION

Nowadays, nanostructures became most fascinated molecular structures. They created many
applications in medicine, electronics and computer science (for more information, see [10, 12,
16]).

In chemical graph theory, a molecular graph is conveniently defined as a simple graph (having
no loops and multiple edges) in which atoms and chemical bonds between them are represented
by vertices and edges, respectively.

A graph G = (V, E) with vertex set V (G) and edge set E(G) is connected if there is a path
between any pair of vertices in G. The degree d, of a vertex u is the number of edges that are
incident to u.



Similarly to the classical total graph T (G) of a graph G, the semi-total (line) graph T1(G) of G is
defined to be the graph whose vertex set is V (G)U E(G) where two vertices of T1(G) are
adjacent if and only if (i) they are adjacent edges of G or (ii) one is a vertex of G and the other is
an edge of G incident to that vertex. Also the semi-total (point) graph T,(G) of G is defined to be
the graph whose vertex set is V (G) U E(G) where two vertices of T,(G) are adjacent if and only
if (i) they are adjacent vertices of G or (ii) one is a vertex of G and the other is an edge of G
incident to that vertex (for more graph operations, see [11,15,17]).

Chemoinformatics is another emerging field in which quantitative structure-activity (QSAR) and
structure-property (QSPR) relationships predict the bio-logical activities and properties of the
nanomaterial, [3]. In these studies, some physicochemical properties and topological indices are
used to predict bioactivity of the chemical compounds, [19,20]. Algebraic polynomials have also
useful applications in chemistry, such as the Hosoya polynomial [6] (also called the Wiener
polynomial), which plays a vital role in determining distance-based topological indices. Among
other algebraic polynomials, the M-polynomials, [2], introduced in 2015, play the same role in
determining the closed form of certain degree-based topological indices. The main advantage of
M-polynomial is the wealth of information that it contains about the degree-based graph
invariants.

The aim of this paper is to compute the Zagreb indices, generalized Randic index, inverse
Randic index and SDD index, M-polynomials of semi-total (line) graph and semi-total (point)
graph of the 2D-lattice, nanotube and nanotorus of TUC4Cg[p, q]. The construction of these
nanostructures is shown in Figure 1.

Let us catalogue all the octagons of TUC4Cg[p, ] which are just cycles Cg and all quadrangles
C4 where p and g denote the number of squares in a row and the number of rows of squares,
respectively, as in Figure 2(a). The nanotube is obtained from the lattice by wrapping it up so
that each drooping edge from the left-hand side connects to the rightmost vertex of the same row
and the nanotorus is obtained from nanotube by wrapping it up so that each drooping edge from
the up side connects to the down most vertex of the same column as shown in Figure 2(b) and
2(c).

Figure 1: Nanostructure
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Figure 2: (a) 2D-lattice, (b) nanotube, (c) nanotorus



Definition 1: The M-polynomial of a graph G is defined by

M(G,xy) = Zmij (G)Xiyj

i<j

Where m;j(G), (i, j > 1), is the number of edges e = uv of G such that (dy , dv) = (i, J).

Let AW(G)+BP3+C, be the approximated boiling point of alkanes determined by Wiener in 1947,
where W(G) is the Wiener index and A, B and C are empirical constants and P is he number of
paths of length 3 in G [26]. Thus, Wiener systematizes the support of topological index, which is
also known as connectivity index. Many chemical experiments require the conviction of the
chemical properties of emanate nanotubes and nanomaterials. Although, no single index in strong
enough, out of more than 146 topological indices to determine many physico-chemical properties of
a molecule, but the following topological indices can do this to some extent. The Randi¢ index,
[18], denoted by R,(G) and introduced by Milan Randi¢ in 1975, is also one of the oldest

2
topological indices defined as

1
R, (G)= ,
%( ) UVE;(G) \ du 'dv

and the generalized Randi¢ index is similarly defined as

1
R,(G)= .
UVEZE(:G) (du 'dv)a

Finally the inverse Randic index is defined as

Ra(G) = Z(du'dv)a )

uveE(G)

Obviously, R, (G) is the particular case of R (G) whena = % .
2
The Randi¢ index is one of the most popular, the most often applied, and the most studied indices

amongst all topological indices. Recently, in [14], Lokesha et. al. established some new bounds for
Randic index which are quite useful.

Gutman and Trinajsti¢, [4, 5], introduced the first and second Zagreb indices, which are defined as

Ml(G) = Z(du + dv)

uveE(G)
and

MZ(G) = zdu'dv’

uveE(G)
respectively.

Both the first and second Zagreb indices give greater weights to the inner vertices and edges, and
smaller weights to the outer vertices and edges, which opposes intuitive reasoning. For a simple
connected graph G, the second modified Zagreb index, [8, 25], is defined as



mMz(G): Z i

uveE(G) du 'dv

Recently, D. Vukicevi¢ and M. Gasperov, [1, 24], exposed the 148 adriatic indices among which
symmetric division deg (SDD) index which is defined as

d’+d?
SDDE@)= 2, iy
uveE(G) uv

is one of the discrete Adriatic indices, and it has been proved as a good predictor for total surface
area for polychlorobiphenyls. Recently, V. Lokesha et.al., [7, 9, 13], worked out SDD index of
unicyclic and bicyclic graphs which is later extended to tricyclic and tetracyclic graphs. Also this
index was calculated for graph operations which gave more attraction to this index.

Table 1 relates some well-known degree-based topological indices with M-polynomials.

Table 1: Derivation of some degree-based topological indices from
M -polynomials.

Topological f(xy) M-polynomial definitions
indices
.G (x+Y) (D,+D, \M(G;x, y))‘xzy:1
M.(G) Xy (DX.DyXM (G;x, y)szy:1
"M 2 (G) xiy (SX-SYXM (G; X y)szy:l
R (G) (xy)* (DD M (G; x, V),
R (G) 1 (7.5 M(G;x, y))‘xzy:l
(xy)*
X* +y° (DXSy + SXDyXM (G;x, y))|
SDD(G) Xy o

o) _a(f(x )
19)4

X y
where D, = jf(t y)dtandS =If(Xt)dt
0 0

This paper is organized as follows. Section 1 consists of a brief introduction which is essential for
the development of main results. Section 2 consists of the first Zagreb, second Zagreb, modified
second Zagreb indices, generalized Randic, inverse Randic indices and SDD index of M-
polynomials of the 2D-lattice, nanotube and nanotorus of the TUC,Cg[p,q] using semi-total (line)
graph operator and the final section concentrates on the results about the same topological in-dices
of the M-polynomials of the 2D-lattice, nanotube and nanotorus of the T UC,Cg[p; q] using semi-
total (point) graph operator.



2. M-polynomials of 2D -lattice, nanotube and nanotorus of TUC,Cg|p, q]

In this section, M-polynomials of 2D-lattice, nanotube and nanotorus of TUC,Cg[p,q] are computed
from the graph structures under consideration. The results are established by means of the edge
partition method.

Theorem 2.1. Let G be the 2D-Lattice of TUC4Cg[p,q]then

1) M(G,x,y)=4x*y* +4(p+q-2)x*y° +(6pq—5(p+q) +4)x°y’
2) M, (G)=36pq—10(p + Q).
3) M,(G)=21(p*+qg*)+16(p+q)+6pq(54pg—30(p+q)+7)—16.

4) "M, (G) =4p°q® —%(p+q—2)2-
5) R,(G)=[21(p*+q*)+16(p+q)+6pq(54pg—30(p+q)+7)—16]".

6) R"'a(e>=[4p2q2—é(p+q—2)21“.

7) SDD(G)=4pq[18pq—5(p+q)]+§(p+q—2)2.

Proof. Let G be the 2D-lattice of TUC4Cg[p,q] where p and q are the number of squares in each row
and the number of rows, respectively. This graph has 4pq vertices and (6pq — p — q) edges. It can
be observed from Figure 2(a) that there are three types of edge partitions, i.e.

Eoon ={e=weEG)d,=2,d, =2} > E,, -4
Ews ={e=uweE(G)[|d,=2,d, =3} E.3 I=4(p+q-2)
Es ={e=uveE(G)|d,=3,d, =3} Ess =6pg—-5(p+q)+4.

Thus, the M-polynomial of the 2D-lattice of TUC,Cg[p,q] is

M(G,x,y) = Zmij (G)Xiyj

i<j

= Z:mzz(G)Xzy2 + Zm23(G)X2y3 + Zmaa(G)X3y3

i=j=2 2<3 i=j=3
= zmzz(G)Xzyz + Zmzs(G)XZYB + sts(G)Xay3
uveE; 2 uveE; 3 uveEs g)

=[E@y | x2y2+| Eua | x2y*+| Eas | x*y?

Now, from M-polynomial equation we compute the following,

M(G,x, y) =4x’y? +4(p+q—2)x*y® +(6pq —5(p+0q) + 4)x°y*
D, =8xy* +[8(p+q—2)Ixy® +[18pg—15(p +q) +12]x°y*
Dx |x:y:1:18 pq _7(p+q)+4

D, =8x*y+12(p+q—2)]x*y* + (18pq —15(p + ) +12]x°y*
Dy |x=y=1::L8 pq _3(p + q) -4



SX:2x2y2+2(p+q—2)]x2y3+2pq—§(p+Q)+4]X2y3
1
Sx |x:y:1=2pq+§(p+q_2)
2.,2 4 2,,3 5 3,,3
Sy =2x°y" +2x°y’ +[2pa -2 (P+ Q) + 41Xy
1
Sy |x=y=l:2pq_§(p+q_2)

Hence, applying these results in equation in topological indices definitions, we obtained required
results.

Figure 2 shows the 3D plot of the M-polynomial of the 2D-latttice:
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Figure 3: The M-polynomial of 2D-lattice

Theorem 2.2. Let H be the nanotube of TUC,Cg[p,q] then

1) M(H,x,y)=4px*y> +6(pg—5p+a)x’y’
2) M, (H)=36pg—10p +6q.
3) M, (H) =6pq(3pg—5)—36pq(5p—3a) +3(7 p* +39°).

. 1., 1
4) MZ(H)=(2pq+§)2—§ p>.

5) R, (H) ={6pa(3pq—5)—36pq(5p—3a)+3(7p* +39°)}".
1, 1,7
6) R a(H)=[(2pCI+§) —59 } .

1 1 1 1
7) SDD(H)=(18pq—7p+3q)[2pq+§q—§ P1+[18pa—-3(p+a)l[2pa+5 0+ p}-

Proof. Let H be the nanotube of TUC4Cg[p,q] where p and g are the number of squares in each row
and number of rows respectively. This graph has 4pq vertices and (6pq —p + q) edges
respectively. So, there are two types of edge partitions (Fig. 2(b)), i.e.

Eps ={e=uveE(H)|d,=2d, =3} > Ej,, [=4p



E(3,3) ={e=uveE(H)[d =3,d, =3} E(3,3) |=6pg—-5p+q.
Thus, the M-polynomial of nanotube of TUC,4Cg[p,q] is

M(H,x,y) = Zmij (H)x'y! =Zm23(H)X2y3 + Zm33(H)X3y3

i< 2<3 i=j=3

= Zmzs(H)X2y3 + sts(H)Xsya

UVEE(2‘3) UVEE(3‘3)
=|Ey | x?y*+| Ees | X%y’
M(H,x y)=4px*y® +(6pq—5p+a)x’y’
Hence,
D, =8pxy® + (18pq—15p +q]x’y*

D, | =18pq-7p+3q

x=y=1"

D, =12px*y* + (18pg—5p+q)x°y?
Dy |x=y=1:18pq _3(p+q)
Sx=2px2y3+(2pq—§p+%q)x3y3
1
Sy leya= (ZIOOI+3Q)+ p
Sy=—px2y3+(2pq——p+%q)x3y3

S Ix y=1"" (2pq+ q)__p
Since, utilizing these results in topological indices definitions, we get the required results.

Figure 3 shows the M-polynomial of the nanotube of 3D graph:
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Figure 4: The M-polynomial of Nanotube



Theorem 2.3. Let K be the 2D-Lattice of TUC4Cg[p,q]then

1. M(K,x,y)=(p+q+6pg)x’y’
2. M, (K)=6(6pg+ p+0).
3. M,(K)=9(6pq+ p +q)>.

4. mMz(K)=[§(p+q)+2pq]2.

(6]

. R,(K)=3(6pg+ p+0a)>".
6. R"'a(K)=[%(p+q)+2pq)2“.

. SDD(K) = 2(6pq + p +0q)°.

\‘

Proof. Let K be the nanotorus of TUC4Cs[p,q] where p and g are the number of squares in each row
and the number of rows, respectively. This graph has 4pq vertices and (6pq + p + q) edges,
respectively. From Figure 2(c), there is one type of edge partition, i.e.

Eiss) ={e=uve E(K)|d,=3,d, =3} Es) =6pg+ p+q.

MK, %, y)=> m (K)x'y! = > mg(K)x*y®

i<j i=j=3

3,3

= sts(K)X3y3 =| E(3,3) | X"y
UVEE(3V3)

M(K,x,y) = (6pg+ p+q)x’y®
D, = (3p+3q+18pqg)x*y®

D, ,-y1=18pa+3(p+0q)
D, =(3p+3q+18pq)x°y?
D, |,.y4=18pq+3(p+0q)

S, =%(p+q+6pq)x3y3
1
Sx |x:y:1:§(p+q)+2pq
1
Sy=§(p+q+6pq)x3y3

1
Sy leyu= g(p +0)+2pg.

Thus, by using the table 1, we obtain the essential results.
The following figure 5 shows the 3D graph of the M-polynomial of the nanotorus:



Figure 5: The M-polynomial of the nanotorus

3. Semi-total line graph of TUC,Cg[p,q]

In this section, we compute the closed forms of the M-polynomials of the semi-total line graph of
the 2D-lattice, nanotube and nanotorus of TUC4Cg[p,q] and the structure of the graph depicted in
Figure 6.
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Figure 6: 2D-lattice, nanotube, nanotorus graphs of semi-total line graph

Theorem 3.1. Let G, be the semi-total line graph of the 2D-lattice of TUC,Cg(p, q) then,

1) M(G,, x.y) =8x*y* +[4(p+q) —8]x*y* +[4(p+0q) —8]x°y" +[2p(6q —5)
+9%(q-6)+(q+2)1x°y° +(a-2)(q-3)x"y" +[2q(5—q) - 4]x"y°
+[pa(q—5)+2(4p+q)-8]x°y’ +[4(p—q) +4(p+a)(q-1)
-(p+9-1)(a-)(a-2)1x°y° +{q(a-1)(5p-6)
—(q-D(@-2)[(p-)(p-2)+5]}x°y".



2) M, (G) = 20(49* —109—67) + p(24p—1) + pq(12 pq—18p +12q+131) +104.

3) M,(G,) ={80°(q—2) +2(7p—26q) + pq(6 pq —18p + 7q + 25) + 4(3p* — 4q°) +104}
x{pq(6pq+5q+131) +12(p? +q°) —2(20p + 419)}.

3
- |-—=q°-= +
6 6) 150 3" 201 60 ' 15
j 28 59 1 , 119 , 173}

+—p+—Qq-=p -=—Qq ' -—
15p 12q 3p 60q 30

m 1 4 1 8 2,1, 53, 9 313 68
4) Mz(Gl){pq(EmEq——pq— j 2-—q? SPe __}

X pq(l F)Jrlq—1 P
2 10 6

5) R, (G,) ={[8q°(q—2)+2(7 p—260) + pq(6 pq—18p +7q + 25)
+4(3p* -49°) +104[ pq(6 pg +5q +131) +12(p* +q?)
-2(20p+419)]1}".
8j_3q3_1 » 53,9, 313 e8]
15 3 20 5" 60 ' 15
jze 59 12_&2_183}0’

. 1 4 1
6) R.(G,)=|pg =p+—q-=pg——
) R,(G,) {Dq[2p+15q 5P

PP

X pq(ipjth—lpq qa -——-5
2 15 12 ° 3 60 30

10 6

7) SDD(G,) ={89°(q—2) + 2(7p —26q) + pq(6pq —18p + 7q + 25) + 4(3p* — 4q°*) +104}

1 7 1 1) p q 173
TP+ —q-=pg+= |- (5p—28)——(119q - 295) - —>
x{pq(zp 10q qu 3) 15(|o ) 60( q ) 30}

+{pq(6pq+5q+131) +12(p* +q*) —2(20p + 41q)}

1 7 1 1 173
X{DQ(EFH'EQ—E pq+§j—%(5p—28)—%(119q—295)—5}

Proof. Let G, be the semi-total 2D-lattice of the TUC4Cg(p,q). The graph has (10pq —p — q)

number of vertices and (24pq — 6(p + q)) number of edges, respectively. By Figure 3, there are
nine types of edge partitions,

Epw ={e=weEG)d, =2.d, =4} —>|E,,|=8

Eps ={fe=w e EG,)|d, =2.d, =5} > |E,5|=4(p+0)-8

Ews) ={e=uv e E(G,)|d, =3d, =5} > |E;55| = 4(p+0q) -8

Ewg ={e=weE(G,)d, =3d, =6} |Eq|=2p(69-5) +q*(q-6) +(q+2)

Euy ={e=ueE(G)d, =4d, =4} > [E4|=(a-2)(q-3)

Eus ={fe=u e EG,)d, =4,d, =5} >|E5|=2q(5-0)-4

Ewss) ={e=uv e E(G,)|d, =5, =5} - |[Eis 5| = pa(q-5) + 2(4p+7) -8

Ese ={e =W e E(G,)d, =5d, =6} > [Esq|=4(p—0a) +4(p+a) (-1 - (2p+q-1)(@-1)(q-2)
Ee ={e=uv e E(G,)|d, =6,d, =6} - |E(sq|=a(a—-1)(Ep—6) - (q-1)(q-2)[(p-1)(p-2) +5].



Thus,
M(G,,x,y) = Zmij (G)x'y!
i<)
= Z m24(Gl)X2y4 + zmzs(G1)X2y5 + z m35(Gl)X3y5 + z m36(Gl)X3y6

2<4 2<5 3<5 3<6

+ Z m,,(G)X*y* + Z m,s(G)x*y® + Z Ms(G,)X°y® + Z My, (G,)x°y°

i=j=4 4<5 i=j=5 5<6

+ Z Me(G)X°Y°.

i=j=6

= Z m24(Gl)X2y4+ Zmzs(Gl)Xzys"' sts(Gl)X3y5+ Z:mse(Gl)Xsy6

uvek; 4 uveE; s uveE s s uveE s g
6
+ > M GOXY + D m(G)XY + D m(G)XYT + D m(G)x°y
uveEy 4 uveEy 5 uveEs g uveEs g
6,,6
+ ZmGG(Gl)X y.
uveE g g)

2.4 2.5 3.5 3,6 4,4 4.5
E(2,4)‘X y +‘E(2,5)‘X y +‘E(3,5)‘X y +‘E(3,6)‘X y +‘E(4,4)‘X y +‘E(4,5)‘X y

5.,5 5,,6 6,,6
+‘E(5'5)‘x y +‘E(5,6)‘x y +‘E(6'6)‘x y

Now, using these, we have,

DX|X:y:1 =80°(q—2)+2(7p—26q) + pa(6 pq—18p+7q+25) + 4(3p° —49°) +104.
— 2 2
D, e pq(6 pq+5q+131) +12(p° +q°)—2(20 p + 41q).
1 4 1 8, 2 p q 68
S =palsp+—q-=pg+=]--=q° =2 (5p—27) - (159q —313) — —.
hya = PO P A= PA+Z] =207~ 2 (Bp—27) — (1590 -313) — =
1 7 1 1] p q 173
S| =pg|Sp+—q-=pg+s|-2(5p—28)— 1 (119¢—295) .
- PQ{Zpﬂ“qu GPQ+3} 15(p ) 60( q ) 0

with these cardinalities substituting in topological indices definitions we get required results.

Figure 7 shows the graph of the M-polynomial of the 2D-lattice:

Figure 7: The M-polynomial of semi-total line graph of 2D-lattice



Theorem 3.2. Let H; be the semi-total line graph of the nanotube of TUC4Cg(p, q) then,
) M(Hy, x,y) =4px’y° +20x°y° +[2pa(5-0) - 42 p - D)Xy’
+[(@-D6p- pa+q-2)Ix°y° +[4p+ p(a-1(a-4)Ix°y’
+[4(p-1)-2p(q-1)(q-H]X°y° +[(a-1)(Bp+5q+q(p—q)) ~10]x°y*.
2) M, (H,) = pq(329+26q) —3q*(4q—1) — (188 p +147q) + 78.
3) M, (H,) =[pq(100+43q) —q*(6q+39) —5(8p +9q) +10]
x[pq(229-17q) -6q°(q—7) —2(74 p +51q) + 68].

. 1 (29 1 1 7
4) Mz(Hl){Epq(?—qj—%(12p+25q)—%q2(5q—24)+g}

1 1 1 32
2pal 3—-=qg |-=(10p+7q)—=q? N+—1|
{ DQ( SQ) 3( p+7q) 6q g+ )+15}
5 R,(H,) :[pq(100+43q)—q2(6q +39)-5(8p+9)+10]*

x[pq(229-17q) —6q°(q—7) —2(74p +51q) + 68]“.

. 1 .29 1 1 71"

6) R (H,) =|=pg(=-9)——(12p+25q)——q?(5q —24) + —
) R, (H,) [Zm(3 a) 30( p+250) 30q(q )+5}
1 1 1 321
2pq(3—-=0)-=(10p+79)-=g*(q+7)+—| .

{ pa( 5(1) 3( p+7q) 6Q(Q+ )+15}
7) SDD(H,) =[pq(43q+100)—q°(6q+39) —5(8 p +9q) +10]

1.1 1 32
X[2|oq(3—gq)—5(10|0+7q)—ng(q+7)+E]+[|00|(229—17q)
, 129 1

—6q (Q—7)—2(74p+51<1)+68]><[§ DQ(?—Q)—%(12P+25Q)

1, 7
——q?(5q - 24) +—].
300|(q ) 5]

Proof. Let H, be the semi-total line graph of the nanotube TUC4Cg[p,q]. This graph has (10pq —
p + 3q) number of vertices and [q(q —5) —pq(q +4)(q —7) — 18p + 6] number of edges,
respectively.

Eps ={e=uveE(H,)d, =2.d, =5} > |E,, 5| = 4p

Eis =fe=uve E(H,)|d, =3,d, =3} > |E4|=2g

Eis ={e=uve E(H,)d, =3d, =5} —>|E4| =2pq(5-q)-4(2p-1)

Eie ={e=uveE(H,)|d, =3d, =6} > |Eyyq|=(a-D(I6p—q(p+1)-2)

Eis ={e=uveE(H,)d, =5d, =5} > |[Ei;5|=4p+p(a-1)(q-4)

Ewe ={e=weE(H,)|d, =5, =6} > |Eisq|=4(p-1) - 2p(q-1)(q—4)

Eee ={e=uve E(H,)[d, =6,d, =6} —>|E|=(a-D[8p+5q+q(p-q)-10].



Thus,
M(H., X, y)= Zmij (H)X'y’

i<j

= Zmzs(Hl)Xzys + sta(Hl)Xsys +Zm35(H1)X3y5 +Zm36(H1)X3y6

2<5 i~)=3 35 36
+ sts(H1)X5y5 +Zm56(H1)x5y6 + Zmes(H1)X6y6-
i=j=5 5<6 i=j=6
= z m25(H1)X2y5+ sts(Hl)X3y3+ sts(Hl)X3y5+ zmse(Hl)XSYG
uveE(; s uveEs 3) uveEs s uveEs q)
+ sts(Hl)Xsys"' ste(Hl)X5y6+ ZmGG(Hl)X6y6'
uveEs s uveEs g uveE g gy
2.5 3.3 3.5 3,,6 5.5
:‘E(z,s) X'y +‘E(3,3)‘X y +‘E(3,5)‘X y "“E(e,,e) Xy +‘E(5,5)‘X y

5,,6 6,,6
+‘E(5’G)‘x y +‘E(6’6)‘x y
Since by above expression we obtain

DX|X:y:1 = pq(439+100) —q°(6q +39) — 4(8p +9q) +10.

D,| = Pa(229-174)-6q"(q—7) - 2(74p+51q) + 68,
129 1 1 -
S| ==pg(=-q)-—(12p+25q)——q* (50— 24) + .

S

y

x=y=1

1.1 1 32
=2pg(3-=0q)—=(0p+7q)—=q*(q+7)+ .
PAB—c @) -5 U0p+7a)—a @+ )+ o

with these cardinalities substituting in topological indices definitions we get required results.
Below figure 8 shows the graph of the M-polynomial of the nanotube:
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Figure 8: The M-polynomial of semi-total line graph of nanotube



Theorem 3.3. Let K; be the semi-total line graph of the nanotorus of TUC,Cg[p,q]. Then,
1) M(K;, %, y) =2(p+a)X’y’ +2(p+0q+6pa)x’y’ +4(3pg— p—q)x°y".
2) M, (K,) =18(14pg—p-0).
3) M,(K,)=72(9pq— p—0)(24pq— p—Qq).
m 2
4) "M, (Ky) ={§(3pq+ pP+a)(Opq+ p+a).

5) R, (K)=[72(9pq - p—-0a)(24pg—p-q)I°.

6) R;(K1)=(§(3pq+ pP+a)(9pq+ p+q)j :
7) SDD(K,) =8(9pq + p+0q)11pg— p—q).

Proof. Let k,be the semi-total line graph of the nanotorus of TUC4Cg[p,q]. This graph has
(10pq + 3(p + q)) number of vertices and 24pq number of edges respectively.

Egy ={e=uveE(K)|d, =3,d, =3} > |Ey| =2(p+0).
Ewe ={e=uve E(K))|d, =3d, =6} —|E | = 2(p+q+6pg).
S ={e=uve E(K1)|du =6,d,=6}— ‘E(e,e)‘ =4(3pg-p-—q).

Thus,
M (K, %, y) = Zmij (K)x'y’

i<j

= Zm33(Kl)x3y3 ++Z My (K, )X y® + Zmes(Kl)XGYG-

i=j=3 3<6 i=j=6
= sts(K1)X3y3 + ste(Kl)Xsy6 + Zmee(Kl)X6y6-
uveEs 3 uveEs g) uveEg g

E(3’3)‘x3y3 +‘E(3’6)‘X3y6 +‘E(6’6)‘x6y6.

Now, using this above equation, we have,
D,|,_,, =12(9pg—p-q).

D,|_,,=6(24pg—p-aq).
2
Sileya =6PA+ 2 (PH0).

S

y

1
=3pg+3(p+0).

x=y=1

with these cardinalities substituting in topological indices definitions we get required results.



Figure 9 shows the graph of the M-polynomial of the nanotorus of the semi-total line graph:

Figure 9: M-polynomial of the nanotorus of semi-total line graph

4. Semi-total point graph of TUC,Cg[p,q]
In this section, we compute the closed forms of the M -polynomials of the semi-total point

graph of 2D-lattice, nanotube and nanotorus of TUC,4C g[p,q] and the structure of the graph
depicted in Figure 10.

OAO&OAO AOAQAOAOA A2>A$A$A/<I>A
4 4 4 4 4 4 L 4 4 4 4
4@@4@/4 4 440 A?AQA?A?A A<4>A<4\A<4\A\4/>A
OAOA/\AO A \/AOAOA< N A/<]\>A<IOA<<]\A<<]>A

Figure 10: The 2D-lattice, nanotube and nanotorus of semi-total point graph

Theorem 4.1. Let G,be the semi-total point graph of the 2D-lattice of TUC 4Cg(p,q). Then

1) M(G,, x.y) =4(p+a)x*y* +[6(p—a) —2pa(q—1)(q—5)Ix*y°
+4x*y +4(p+q-2)x"y® +[6pg—5(p +q) +4]x°y°.
2) M,(G,) =4(13p—11q)-8pq(29° —6q +5)
3) M,(G,) =[6(p—30)—4pq(a’® +6q+4) +8]x[2(23p—13q) ~12pq(q’ —6q +2) —8].



4 ™M,(G,) = 5 [(81p~56) ~6pa(a* + 69+ 4+ 8]<[A1p )
—12pq(q*—6q+2) +2].
5) R, (G,) =[6(p—3a)—4pa(q” +6q+4)+8]“ x[2(23p—13q)
—12pg(q® -6q+2)-8]"
6) R;(Gl){%j [(31p-50) - 6pa(a” ~6q+4)-2f
<|11p-q)—2pa(g® —6q+2) + 2|

7) SDD(Gl){(p—Sq)—% pq(q2+6q+4)+%}[(11p—q)—2pq(q2—6q+2)+2]

1 4
{5 (23p—130) —12pg(q” —6q+2)—§}x[(31|o—5q)—6|00|(q2 —~6q+4)-2]

Proof. Let G, be the semi-total point graph of the nanotube of TUC4Cg(p,q). The graph has
(10pq — p — q) number of vertices and (3(3p — q) — 2pq(q? — 6q + 2)) number of edges
respectively. From figure there are five types of edge partitions:

Ep. ={e=weE(G,)d, =2d, =4 - |E,, |=4(p+0)
Eps ={e=WeE(G,)d, =2d, =6} |E,,|=[6(p-a)-2pa(q-1)(q-5)]
Ewn={e=weE(G,)d, =4d, =4} >|E,,[=4

Ews) ={e=WeE(G,)|d, =4d, =6} |E,, o |=4(p+q-2)

Eee ={e=ueE(G,)|d, =6,d, =6} —|E | =[6pq—5(p+q)+4]

Thus,
M(G,, %, y) = Zmij (G,)x'y’

i<j

= Zm24(G2)X2y4 +Zm26(Gz)X2y6 + Zm44(Gz)X4y5

2<4 26 iZj=4
+Zm46(Gz)X4y6+ Zmee(Gz)XGyG-
46 iZ)=6
= Z m,,(G,)x*y* + zmze(Gz)Xzye + zm44(Gz)X4y4
uveE; 4 uveE(; g UveE 4
+ zm46(G2)X4y6 + zmea(Gz)X6y6-
uveE 4 6 uveEg g

2.4 2.6 4,4 4.6 6.,6
:‘E(2,4)‘X y +‘E(2,6)‘X y +‘E(4,4)‘X y +‘E(4,e)‘x y +‘E(6,6)‘X y".



Here, we have,

D,|,_,, =6(p—30)—4pa(q* +6q+4)+8

D

y

1 1
Sy = (BLP—50) ~ Pa(q* -6 +4)

oy = 2(23p—-130)-12pg(q” ~6q +2) -8

Sy‘x=y=l =6(11P—Q)—§ pa(a® —6q +2)+§

with these substituting in topological indices definitions we get required results.

Figure 11 shows the graph of the M-polynomial of the 2D-lattice:

Figure 11: The M-polynomial of semi-total point graph of 2D-lattice

Theorem 4.2. Let H, be the semi-total point graph of nanotube of TUC4Cg(p,q) then,

1) M(H,, %, y)=4px’*y* +[6p(2q—1) +2q]x°y° + 4 px‘y® + (6 pg —5p + ) x°y°
2) M (H,)=28(6p+1)—44p.
3) M,(H,)=4[5q(6p+1)-9p][9q(6p +1) -13p].

4) mMz(Hz)=[7pq—%(5p—37q)}{3pq—%(p—3q)}

5) R,(H,)=[4(5q(6p+1)-9p)(9q(6p+1) -13p)]".
6) R«(H,) =[(7 pq—%(Sp—37q)j(3pq—%(p—?»q)ﬂ :
7) SDD(H,) =[10p(6p+1)—18p]><[3pq—%(p—3q)}+[18q(6p+1)—26p]

{7 pq—%(Sp—?ﬂq)}



Proof. Let H,be the semi-total point graph of nanotube TUC4Cs(p,q). The graph has

(10pgq — p + 3q) number of vertices and (18pq — 3(p — q)) number of edges respectively.
Ep. ={e=weE(H,)d, =2d, =4} >|E, 4| =4p

Epe ={e=uve E(H,)d, =2.d, =6} > |E, | =[6p(20 1) +2q]

Eug ={e=uveE(H,)d, =4,d, =6} > [E,,q|=4p

Ees ={e=uveE(H,)[d, =6,d, =6} |Es|=(6pg—5p+0)

Thus,
M(H,, % y)= zmij (Hy)x'y’
i
= Zm24(H2)X2y4 "‘Z:mzs(Hz)Xzy6 +Zm44(H2)X4y6 + zmee(Gz)X6y6
2<4 2<6 4<6 iZj=6
= ‘E(2,4)‘X2y4 +‘E(2,6)‘X2y6 +‘E(4,6)‘X4y6 +‘E(6|6)‘X6y6
Now,
DX|x=y=l =10q(6p+1)—18p

D,|,, =18q(6p+1)-26p.
1
Sul,.y1 =7PA~ (5p-370)

1
=3pq—(p—30).

S
Yix=y=1

with these substituting in topological indices definitions we get required results.

From the figure 12 shows the graph of nanotube of M-polynomial:

Figure 12: The M-polynomial of semi-total point graph of nanotube

Theorem 4.3. Let K, be the semi-total point graph of nanotorus of TUC4Cg(p,q) then,



1) M(K,, %, y)=2(p+q+6pa)x*y° +(6pq+ p+q)x°y°
2) M,(K,)=28(6pg+ p+Q).
3) M, (H,) =180(6 pq + p+q)>.

n 7 )
4) Mz(Kz)—lz(GpCH‘ p+0q)°.
5) R, (K,) =[180(6 pq+ p+q)J*“.
. 7 , |
6) Ra(Kz)=[E(6pCI+ p+q) } :
7) SDD(H,) =26(6pg+ p+0q)°.

Proof. Let K,be the semi-total point graph of nanotorus TUC4Cg(p,q). The graph has
(10pq — 3(p + q)) number of vertices and 3(6pq + p + q) number of edges respectively.
Epe ={e=uv e E(K,)|d, =2.d, =6} > |E(,|=2(p+0+6pq)

Ees ={e=uve E(K,)d, =6d, =6} — ‘E(s,e)‘ =(6pa+p+q)

Thus,
M (K, X, y) = Zmij (K)x'y’
i<
= Zmzs(Kz)X2y6 + Zmee(Kz)XeyG-
2<6 i=j=6
= ‘E(Z’G)‘xzy6 +‘E(6,6)‘x6y6.
Now,

D,|,.,, =10(6pq + p+q)

D,| ,=18(6pq+p+0)
,
Slya =5 6PA+PT0)

x=y=1 -

1
=5(6pq+ p+0q)

Yix=y=1

with these substituting in topological indices definitions we get required results.

From the figure 13 shows the graph of nanotorus of M-polynomial:



X

Figure 13: The M-polynomial of semi-total point graph of nanotorus

CONCLUSIONS

In this article, we computed the closed form of the M-polynomial for the 2D-lattices,
nanotubes and nanotorus. We derived certain degree-based topological indices for these
nanostructures. We also plot some surfaces associated with these nanostructures that show
the dependence of each topological index on the parameters of the structure. These indices
can help us to understand its physical features, chemical and biological activities such as the
boiling point, the heat of formation, the fracture toughness, the strength, the conductivity and
the hardness. From this point of view, a topological index can be regarded as a score function
that maps each molecular structure to a real number and is used as a descriptor of the
molecule under testing.
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