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Abstract: The discovery of new nanomaterials adds new dimensions to industry, electronics, 

pharmaceutical and biological therapeutics. In this article, authors encountered the closed forms 

M-polynomials of nanostructures such 2D-lattice, nanotube and nanotorus of TUC4C8[p, q] for 

some degree-based topological indices. These indices are numerical tendency that often depict 

quantitative structural activity/property/toxicity/relationships and correlate certain physico-

chemical properties, such boiling point, stability, and strain energy of the respective 

nanomaterial. 

 

Keywords: Topological indices, M-polynomials, 2D-lattice, nanotube, nanotorus, semi-total line 

and semi-total operator. 

 

 

INTRODUCTION 
 

Nowadays, nanostructures became most fascinated molecular structures. They created many 

applications in medicine, electronics and computer science (for more information, see [10, 12, 

16]). 

 

In chemical graph theory, a molecular graph is conveniently defined as a simple graph (having 

no loops and multiple edges) in which atoms and chemical bonds between them are represented 

by vertices and edges, respectively. 

 

A graph G = (V, E) with vertex set V (G) and edge set E(G) is connected if there is a path 

between any pair of vertices in G. The degree du of a vertex u is the number of edges that are 

incident to u. 



 

Similarly to the classical total graph T (G) of a graph G, the semi-total (line) graph T1(G) of G is 

defined to be the graph whose vertex set is V (G)U E(G) where two vertices of T1(G) are 

adjacent if and only if (i) they are adjacent edges of G or (ii) one is a vertex of G and the other is 

an edge of G incident to that vertex. Also the semi-total (point) graph T2(G) of G is defined to be 

the graph whose vertex set is V (G) U E(G) where two vertices of T2(G) are adjacent if and only 

if (i) they are adjacent vertices of G or (ii) one is a vertex of G and the other is an edge of G 

incident to that vertex (for more graph operations, see [11,15,17]). 

 

Chemoinformatics is another emerging field in which quantitative structure-activity (QSAR) and 

structure-property (QSPR) relationships predict the bio-logical activities and properties of the 

nanomaterial, [3]. In these studies, some physicochemical properties and topological indices are 

used to predict bioactivity of the chemical compounds, [19,20]. Algebraic polynomials have also 

useful applications in chemistry, such as the Hosoya polynomial [6] (also called the Wiener 

polynomial), which plays a vital role in determining distance-based topological indices. Among 

other algebraic polynomials, the M-polynomials, [2], introduced in 2015, play the same role in 

determining the closed form of certain degree-based topological indices. The main advantage of 

M-polynomial is the wealth of information that it contains about the degree-based graph 

invariants. 

 

The aim of this paper is to compute the Zagreb indices, generalized Randic index, inverse 

Randic index and SDD index, M-polynomials of semi-total (line) graph and semi-total (point) 

graph of the 2D-lattice, nanotube and nanotorus of TUC4C8[p, q]. The construction of these 

nanostructures is shown in Figure 1. 

 

Let us catalogue all the octagons of TUC4C8[p, q] which are just cycles C8 and all quadrangles 

C4 where p and q denote the number of squares in a row and the number of rows of squares, 

respectively, as in Figure 2(a). The nanotube is obtained from the lattice by wrapping it up so 

that each drooping edge from the left-hand side connects to the rightmost vertex of the same row 

and the nanotorus is obtained from nanotube by wrapping it up so that each drooping edge from 

the up side connects to the down most vertex of the same column as shown in Figure 2(b) and 

2(c). 

 
 

 

 

                                                            Figure 1: Nanostructure  

 

 

 

 

 

                                     

                                        Figure 2: (a) 2D-lattice, (b) nanotube, (c) nanotorus 



Definition 1: The M-polynomial of a graph G is defined by 
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Where mij(G), (i, j ≥ 1), is the number of edges e = uv of G such that (du , dv) = (i, j). 
 
Let AW(G)+BP3+C, be the approximated boiling point of alkanes determined by Wiener in 1947,  

where  W(G) is the Wiener index and A, B and C are empirical constants and    is he number of 

paths of length 3 in G [26].  Thus, Wiener systematizes the support of topological index, which is 

also known as connectivity index.  Many chemical experiments require the conviction of the 

chemical properties of emanate nanotubes and nanomaterials. Although, no single index in strong 

enough, out of more than 146 topological indices to determine many physico-chemical properties of 

a molecule,  but the following topological indices can do this to some extent. The       ́ index, 

[18], denoted by )(
2

1 GR  and introduced by Milan Randić in 1975, is also one of the oldest 

topological indices defined as 
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and the generalized Randić index is similarly defined as 
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Finally the inverse Randic index is defined as 
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Obviously, )(
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The Randić index is one of the most popular, the most often applied, and the most studied indices 

amongst all topological indices. Recently, in [14], Lokesha et. al. established some new bounds for 

Randic index which are quite useful. 

 
Gutman and Trinajstić, [4, 5], introduced the first and second Zagreb indices, which are defined as 
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respectively. 
 

Both the first and second Zagreb indices give greater weights to the inner vertices and edges, and 

smaller weights to the outer vertices and edges, which opposes intuitive reasoning. For a simple 

connected graph G, the second modified Zagreb index, [8, 25], is defined as 

 
 







)(

2
.

1
)(

GEuv vu

m

dd
GM . 

 

Recently, D. Vukicević and M. Gasperov, [1, 24], exposed the 148 adriatic indices among which 

symmetric division deg (SDD) index which is defined as 

 







)(

22

.
)(

GEuv vu

uu

dd

dd
GSDD , 

 

is one of the discrete Adriatic indices, and it has been proved as a good predictor for total surface 

area for polychlorobiphenyls.  Recently, V. Lokesha et.al., [7, 9, 13], worked out SDD index of 

unicyclic and bicyclic graphs which is later extended to tricyclic and tetracyclic graphs. Also this 

index was calculated for graph operations which gave more attraction to this index. 

 

Table 1 relates some well-known degree-based topological indices with M-polynomials. 
 

Table 1: Derivation of some degree-based topological indices from  
M -polynomials. 
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This paper is organized as follows. Section 1 consists of a brief introduction which is essential for 

the development of main results. Section 2 consists of the first Zagreb, second Zagreb, modified 

second Zagreb indices, generalized Randic, inverse Randic indices and SDD index of M-

polynomials of the 2D-lattice, nanotube and nanotorus of the TUC4C8[p,q] using semi-total (line) 

graph operator and the final section concentrates on the results about the same topological in-dices 

of the M-polynomials of the 2D-lattice, nanotube and nanotorus of the T UC4C8[p; q] using semi-

total (point) graph operator. 

 

 



 

2.  M-polynomials of 2D -lattice, nanotube and nanotorus of TUC4C8[p, q] 

 
In this section, M-polynomials of 2D-lattice, nanotube and nanotorus of TUC4C8[p,q] are computed 

from the graph structures under consideration. The results are established by means of the edge 

partition method. 

 

Theorem 2.1. Let G be the 2D-Lattice of TUC4C8[p,q]then 
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Proof. Let G be the 2D-lattice of TUC4C8[p,q] where p and q are the number of squares in each row 

and the number of rows, respectively. This graph has     vertices and           edges. It can 

be observed from Figure 2(a) that there are three types of edge partitions, i.e. 
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Thus, the M-polynomial of the 2D-lattice of TUC4C8[p,q] is
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Now, from M-polynomial equation we compute the following, 
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Hence, applying these results in equation in topological indices definitions, we obtained required 

results. 

 

Figure 2 shows the 3D plot of the M-polynomial of the 2D-latttice: 

 

 

Figure 3: The M-polynomial of 2D-lattice 

 

Theorem 2.2. Let H be the nanotube of TUC4C8[p,q] then 
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Proof. Let H be the nanotube of TUC4C8[p,q] where   and   are the number of squares in each row 

and number of rows respectively. This graph has     vertices and            edges 

respectively. So, there are two types of edge partitions (Fig. 2(b)), i.e. 

pEddHEuveE vu 4||}3,2|)({ )3,2()3,2(   



.56||}3,3|)({ )3,3()3,3( qppqEddHEuveE vu 
 

Thus, the M-polynomial of nanotube of TUC4C8[p,q] is 
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Since, utilizing these results in topological indices definitions, we get the required results. 

Figure 3 shows the M-polynomial of the nanotube of 3D graph: 

 
Figure 4: The M-polynomial of Nanotube 

 

 



Theorem 2.3. Let K be the 2D-Lattice of TUC4C8[p,q]then 
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Proof. Let K be the nanotorus of TUC4C8[p,q] where   and   are the number of squares in each row 

and the number of rows, respectively. This graph has     vertices and               edges, 

respectively. From Figure 2(c), there is one type of edge partition, i.e. 
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Thus, by using the table 1, we obtain the essential results. 

The following figure 5 shows the 3D graph of the M-polynomial of the nanotorus: 

 

 

 

 

 



 
 

Figure 5: The M-polynomial of the nanotorus 

 

 

3.  Semi-total line graph of TUC4C8[p,q] 

 
In this section, we compute the closed forms of the M-polynomials of the semi-total line graph of 

the 2D-lattice, nanotube and nanotorus of TUC4C8[p,q] and the structure of the graph depicted in 

Figure 6. 

 

 

 

 

 

 

 

 

 

 

Figure 6:  2D-lattice, nanotube, nanotorus graphs of semi-total line graph 

 

Theorem 3.1.  Let    be the semi-total line graph of the 2D-lattice of TUC4C8(p, q) then, 
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Proof.  Let    be the semi-total 2D-lattice of the TUC4C8(p,q). The graph has            

number of vertices and               number of edges, respectively. By Figure 3, there are 

nine types of edge partitions, 
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with these cardinalities substituting in topological indices definitions we get required results. 

 

Figure 7 shows the graph of the M-polynomial of the 2D-lattice: 

 

 
Figure 7: The M-polynomial of semi-total line graph of 2D-lattice 



 

  Theorem 3.2. Let    be the semi-total line graph of the nanotube of TUC4C8(p, q) then,  
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Proof. Let    be the semi-total line graph of the nanotube TUC4C8[p,q]. This graph has       

      number of vertices and                             number of edges, 

respectively. 
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with these cardinalities substituting in topological indices definitions we get required results. 

Below figure 8 shows the graph of the M-polynomial of the nanotube: 

                                       

                                           

 

Figure 8:  The M-polynomial of semi-total line graph of nanotube



 

Theorem 3.3.  Let    be the semi-total line graph of the nanotorus of TUC4C8[p,q].   Then, 
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Proof. Let   be the semi-total line graph of the nanotorus of TUC4C8[p,q].  This graph has 

              number of vertices and      number of edges respectively. 
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with these cardinalities substituting in topological indices definitions we get required results. 

 

 

 

 

 

 



 

 
 

 

Figure 9 shows the graph of the M-polynomial of the nanotorus of the semi-total line graph: 
                                  

                                            
 

 

Figure 9: M-polynomial of the nanotorus of semi-total line graph 

 

 

 

4.  Semi-total point graph of TUC4C8[p,q] 
In this section, we compute the closed forms of the M -polynomials of the semi-total point 

graph of 2D-lattice, nanotube and nanotorus of TUC4C 8[p,q] and the structure of the graph 

depicted in Figure 10. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 10: The 2D-lattice, nanotube and nanotorus of semi-total point graph 

 
 

Theorem 4.1. Let   be the semi-total point graph of the 2D-lattice of TUC 4C8(p,q). Then 
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Proof. Let    be the semi-total point graph of the nanotube of TUC4C8(p,q). The graph has  

           number of vertices and                        number of edges 

respectively.  From figure there are five types of edge partitions: 
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Here, we have, 
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with these substituting in topological indices definitions we get required results. 

 

Figure 11 shows the graph of the M-polynomial of the 2D-lattice: 

 

 
 

Figure 11:  The M-polynomial of semi-total point graph of 2D-lattice 
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Proof. Let   be the semi-total point graph of nanotube TUC4C8(p,q).  The graph has 

            number of vertices and               number of edges respectively. 
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 with these substituting in topological indices definitions we get required results. 

 

From the figure 12 shows the graph of nanotube of M-polynomial:
 

 

 

Figure 12: The M-polynomial of semi-total point graph of nanotube 

 

Theorem 4.3. Let    be the semi-total point graph of nanotorus of TUC4C8(p,q) then, 
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Proof. Let   be the semi-total point graph of nanotorus TUC4C8(p,q).  The graph has 

              number of vertices and            number of edges respectively. 
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with these substituting in topological indices definitions we get required results. 

 

From the figure 13 shows the graph of nanotorus of M-polynomial:
 

   



 

 
 

 

 
Figure 13: The M-polynomial of semi-total point graph of nanotorus 

 

 

 
CONCLUSIONS 
 

In this article, we computed the closed form of the M-polynomial for the 2D-lattices, 

nanotubes and nanotorus. We derived certain degree-based topological indices for these 

nanostructures. We also plot some surfaces associated with these nanostructures that show 

the dependence of each topological index on the parameters of the structure. These indices 

can help us to understand its physical features, chemical and biological activities such as the 

boiling point, the heat of formation, the fracture toughness, the strength, the conductivity and 

the hardness. From this point of view, a topological index can be regarded as a score function 

that maps each molecular structure to a real number and is used as a descriptor of the 

molecule under testing. 
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