Tamap Journal of Mathematics and Statistics Volume 2017, Article ID 12

Research Article

Ideal Convergent Double Sequence Spaces in Random n-Normed Spaces

Sabiha Tabassum^{1,*} and Mohd Khalid Rafat Khan²

¹Department of Applied Mathematics, Zakir Hussain College Of Engineering and Technology, Aligarh Muslim University, Aligarh-202002, India ²College of Science & Theoretical Studies, Saudi Electronic University, Al Muledah Quarter, Buraidha-52571, K.S.A.

* Corresponding author, e-mail: (sabiha.math08@gmail.com)

Received: 20 June 2017 / Accepted: 19 August 2017

Abstract: In this article we define and study the notion of Δ_m^n -Ideal convergent and Δ_m^n -Cauchy double sequence in a random n-normed space (X, F, *) and proved some interesting results.

Keywords: Double Sequence, Ideal, I-convergence, Δ_m^n -Ideal Convergence, *n*-Norm, Random *n*-Norm.

1. INTRODUCTION

A double sequence is denoted by $x = (x_{ij})$. In the case of one variable, we began with the study of sequences of numbers x_i , where the suffix *i* could be any integer. Here double sequences (see[7]) have a corresponding importance. These are sets of numbers x_{ij} with two subscripts, which run through the sequence of all integers independently of each other, so that we have, for example, the numbers

 x_{31} x_{32} x_{33} ...

Examples of such sequences are the sets of numbers

1.
$$x_{ij} = \frac{1}{i+j};$$

2. $x_{ij} = \frac{1}{i^2 + j^2};$
3. $x_{ij} = \frac{i}{i+j}.$

Definition 1.1. [7] A double sequence $x = (x_{jk})$ has pringsheim limit L (denoted by $P - \lim x = L$) provided that given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_{jk} - L| < \varepsilon$ whenever j, k > N. We shall describe such an x more briefly as "P-convergent".

A double sequence (x_{ik}) is bounded if

$$|x|| = \sup_{j,k\geq 0} |x_{jk}| < \infty.$$

Remark 1.1. In contrast to the case for single sequences, a P-convergent double sequences need not be bounded. The initial works on double sequences is found in Bromwich [5], Tripathy [3], Basarir and Solancan [15] and many others.

The concept of statistical convergence was defined by Steinhauss[9] at a conference held at Wroclaw University, poland in 1949 and also independently by fast[8] and Schoenberg [11], Menger [13], M. Gurdal[16], Karakus[21], Buck[18], Connor[12] etc. Statistical convergence is a generalization of the usual notation of convergence that parallels the usual theory of convergence. Kostryko et al.[18] introduced the notion of I convergence. The notion of I-convergence is a generalization of statistical convergence. It was studied by many authors in [17],[22]. Here we give some preliminaries about the notion of I-convergence.

Definition 1.4. Let X be a non empty set. Then a family of sets $I \subseteq 2^{X} (2^{X})$ denoting the power set of X) is said to be an ideal if

- 1. $\emptyset \in I$
- 2. *I* is additive i.e $A, B \in I \Longrightarrow A \cup B \in I$
- 3. I is hereditary i.e $A \in I, B \subseteq A \Rightarrow B \in I$.

An Ideal $I \subseteq 2^x$ is called non-trivial if $I \neq 2^x$. A non-trivial ideal $I \subseteq 2^x$ is called admissible if $\{\{x\}: x \in X\} \subseteq I$. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

For each ideal I, there is a filter $\pounds(I)$ corresponding to I.

i.e $\mathfrak{t}(I) = \{K \subseteq I \quad N: K^c \in I\}$, where $K^c = I \quad N-K$.

Definition 1.5. A sequence $(x_{ij}) \in \omega$ is said to be I-convergent to a number *L* if for every $\varepsilon > 0$, $\{i, j \in I \quad N : |x_{ij} - L| \ge \varepsilon\} \in I$. In this case we write $I - \lim x_{ij} = L$.

2. MATERIALS AND METHODS

Random 2-normed space and *I* -convergence

The theory of probabilistic normed spaces was initiated and developed in [8],[9]. This theory is important as a generalization of deterministic results of linear normed spaces and also in the study of random operator equations. Further it was extended to random/probabilistic 2-normed spaces by Golet[10] using the concept of 2-norm of Gähler[20].

Definition 2.1. A function $f : \mathbb{R} \to \mathbb{R}_0^+$ is called a *distribution functions* if it is non-decreasing and left continuous with $\inf_{t \in \mathbb{R}} f(t) = 0$ and $\sup_{t \in \mathbb{R}} f(t) = 1$. By D^+ , we denote the set of all distribution functions such that f(0) = 0.

If $a \in \mathsf{R}_0^+$, then $H_\alpha \in D^+$, where $H_a(t) = \begin{cases} 1, & \text{if } t > a; \\ 0, & \text{if } t \le a. \end{cases}$

It is obvious that $H_0 \ge f$ for all $f \in D^+$.

A *t-norm* is a continuous mapping $*:[0,1]\times[0,1]\to[0,1]$ such that ([0,1],*) is an Abelian monoid with unit one and $c*d \ge a*b$ if $c \ge a$ and $d \ge b$ for all $a,b,c,d \in [0,1]$. A triangle function τ is a binary operation on D^+ , which is commutative, associative and $t(f,H_0) = f$ for every $f \in D^+$.

In [20], Gähler introduced the following concept of a 2-normed space in the mid of 1960's. Since then, many researchers have studied this concept and obtained various results.

Definition 2.2. Let X be a real vector space of dimension d > 1. A real-valued function ||...,|| from X^2 into R satisfying the following conditions:

- 1. $||x_1, x_2|| = 0$ if and only if x_1, x_2 are linearly dependent,
- 2. $||x_1, x_2||$ is invariant under permutation,
- 3. $|| \alpha x_1, x_2 || = |\alpha| || x_1, x_2 ||$ for any $\alpha \in \mathsf{R}$,
- 4. $||x + x', x_2|| \le ||x, x_2|| + ||x', x_2||$

is called a 2-norm on X and the pair (X, ||., ||) is called a 2-normed space.

A trivial example of a 2-normed space is $X = R^2$, equipped with the Euclidean 2-norm $||x_1, x_2||$ = the area of the parallelogram spanned by the vectors x_1, x_2 which may be given explicitly by the formula

 $||x_1, x_2||_E = |det(x_{ij}| = abs(det(< x_i, x_j >))),$ where $x_i = (x_{i1}, x_{i2}) \in \mathbb{R}^2$ for each i = 1, 2.

Let $n \in \mathbb{N}$ and X be a real vector space of dimension d, where $n \leq d$. A real valued function $|| \dots ||$ on X^n satisfying the following four conditions:

- 1. $||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent;
- 2. $||x_1, x_2, ..., x_n||$ is invariant under permutation:
- 3. $|| \alpha x_1, x_2, ..., x_n || = \alpha || x_1, x_2, ..., x_n ||$, for any $\alpha \in R$:
- 4. $||x + x', x_2, ..., x_n|| \le ||x, x_2, ..., x_n|| + ||x', x_2, ..., x_n||$

is called an *n*-norm on X, and the pair $(X, \|..., \|)$ is then called an n-normed space.

As a standard example of a n-normed space we may take R^n being equipped with the nnorm $||x_1, x_2, ..., x_n||_E$ = the volume of the n-dimensional parallelopiped spaned by the vectors $x_1, x_2, ..., x_n$ which may be given explicitly by the formula

$$||x_1, x_2, ..., x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, ..., x_{in}) \in \mathbb{R}^n$ for each i = 1, 2, ..., n.

Recently, Golet [10] used the idea of a 2-normed space to define a random 2-normed space since then many researchers have studied this concept for instance [2],[14], [22].

Definition 2.3. [6] Let X be a linear space of dimension $d > 1, \tau$ a triangle, and $F: X \times X \to D^+$. Then F is called a probabilistic 2-norm and (X, F, τ) a probabilistic 2-normed space if the following conditions are satisfied:

- 1. $F(x, y;t) = H_0(t)$ if x and y are linearly dependent, where F(x, y;t) denotes the value of F(x, y) at $t \in R$,
- 2. $F(x, y; t) \neq H_0(t)$ if x and y are linearly independent,
- 3. F(x, y; t) = F(y, x; t), for all $x, y \in X$,
- 4. $F(\alpha x, y; t) = F(x, y; \frac{t}{\alpha})$, for every $t > 0, \alpha \neq 0$ and $x, y \in X$,
- 5. $F(x+y,z;t) \ge \tau(F(x,z;t),F(y,z;t))$, whenever $x, y, z \in X$. If 5 is replaced by
- 6. $F(x+y,z;t_1+t_2) \ge F(x,z;t_1) * Fy,z;t_2)$, for all $x, y, z \in X$ and $t_1, t_2 \in R_0^+$;

then (X, F, *) is called a random 2-normed space (for short, R2NS).

Remark 2.1. Every 2-normed space can be made a random 2-normed space in a natural way by setting $F(x, y; t) = H_0(t - Px, yP)$ for every $x, y \in X, t > 0$ and $a * b = \min\{a, b\}, a, b \in [0, 1]$.

Example 2.1. Let (X, ||., ||) be a 2-normed space with $||x, z|| = ||x_1z_2 - x_2z_1||, x = (x_1, x_2), z = (z_1, z_2)$ and $a * b = ab, a, b \in [0, 1]$. For all $x \in X, T > 0$ and nonzero $z \in X$, consider

$$F(x, y; t) = \begin{cases} \frac{t}{t + \mathsf{P}x, z\mathsf{P}}, & \text{if } t > 0; 0, \end{cases} \quad \text{if } t \le 0.$$

Then (X, F, *) is a random 2-normed space.

Definition 2.4. Let X be a linear space of dimension d > n, and let F be a mapping defined on the cartesian product of X by itself of n times X^n into D^+ such that the following conditions are satisfied:

- 1. $F(x_1, x_2, ..., x_n; t)$ is invariant under any permutation of $x_1, x_2, ..., x_n \in X$
- 2. $F(x_1, x_2, ..., x_n; t) = F(x_1, x_2, ..., x_n; \frac{t}{\varphi(\alpha)})$ for every $x_1, x_2, ..., x_n \in X$ and $\alpha \in R$ 3. $F(x_1, x_2, ..., x_{n-1}, y + z; t) \ge \tau(F(x_1, x_2, ..., x_{n-1}, y; t), F(x_1, x_2, ..., x_{n-1}, z; t))$, for every $x_1, x_2, ..., x_{n-1}, y, z \in X$ 4. $F(x_1, x_2, ..., x_n; t_1 + t_2) \ge F(x_1, x_2, ..., x_n; t_1) * F(x_1, x_2, ..., x_n; t_2))$, for all $x_1, x_2, ..., x_n \in X$

then (X, F, *) is called a probabilistic n-normed space (for short, RnNS).

Definition 2.5. A sequence $x = (x_{k,l})$ in a random 2-normed space (X, F, *) is said to be *double convergent* (or *F* -convergent) to $l \in X$ with respect to *F* if for each $\varepsilon > 0, \eta \in (0,1)$, there exists a positive integer n_0 such that $F(x_{kl} - l, z; \varepsilon) > 1 - \eta$, whenever $k, l \ge n_0$ and for nonzero $z \in X$. In this case we write $F - \lim_{k \to 1} x_{kl} = l$, and *l* is called the *F* -limit of $x = (x_{k,l})$.

Definition 2.6. A sequence $x = (x_{k,l})$ in a random 2-normed space (X, F, *) is said to be *double Cauchy* with respect to F if for each $\varepsilon > 0, \eta \in (0,1)$, there exists $N = N(\varepsilon)$ and $M = M(\varepsilon)$ such that $F(x_{kl} - x_{pq}, z; \varepsilon) > 1 - \eta$, whenever $k, p \ge N$ and $l, q \ge M$ for nonzero $z \in X$.

Definition 2.7. A sequence $x = (x_{k,l})$ in a random 2-normed space (X, F, *) is said to be *double statistically convergent or* S^{2R2N} *-convergent* to some $l \in X$ with respect to F if for each $\varepsilon > 0 \eta \in (0,1)$, and for nonzero $z \in X$. such that

$$\delta(\{(k,l)\in N\times N: F(x_{kl}-l,z;\varepsilon)\leq 1-\eta\})=0.$$

In other words, we can write the sequence (x_{kl}) double statistically converges to l in R2N space (X, F, *) if

$$\lim_{m,n\to\infty}\frac{1}{mn}|\{k\leq m,l\leq n:F(x_{kl}-l,z;\varepsilon)\leq 1-\eta\}|=0.$$

or equivalently,

$$\delta(\{k, l \in N : F(x_{kl} - l, z; \varepsilon) > 1 - \eta\}) = 1$$

that is

$$S^{2} - \lim_{k \to \infty} F(x_{kl} - l, z; \varepsilon) = 1$$

In this case we write $S^{2R2N} - \lim x = l$, and *l* is called the S^{2R2N} -limit of *x*. Let $S^{2R2N}(X)$ denote the set of all double statistically convergent sequences in a random 2-normed space (X, F, *).

Definition 2.8. Let *I* be a nontrivial ideal. A double sequence $x = (x_{kl})$ is said to be *I*-convergent in (X, F, *) or simply I_F -convergent to *l* if for every $\varepsilon > 0$, $\eta \in (0,1)$ and nonzero $z \in X$, we have $\{k, l \in N : F(x_{kl} - l, z; \varepsilon) \le 1 - \eta\} \in I$.

3. RESULTS AND DISCUSSION

Random n-normed space and *I*-convergence

Definition 3.1. A sequence $x = (x_{j,k})$ in a random n-normed space (X, F, *) is said to be *double convergent* (or *F*-convergent) to $l \in X$ with respect to *F* if for each $\varepsilon > 0, \eta \in (0,1)$, there exists a positive integer n_0 such that $F(x_{jk} - l, z_1, z_2, ..., z_{n-1}; \varepsilon) > 1 - \eta$, whenever $j, k \ge n_0$ and for nonzero $z_1, z_2, ..., z_{n-1} \in X$. In this case we write $F - \lim_{j,k} x_{jk} = l$, and *l* is called the *F*-limit of $x = (x_{ik})$.

Definition 3.2. A sequence $x = (x_{jk})$ in a random n-normed space (X, F, *) is said to be *double Cauchy* with respect to F if for each $\varepsilon > 0, \eta \in (0,1)$, there exists $N = N(\varepsilon)$ and $M = M(\varepsilon)$ such that $F(x_{jk} - x_{pq}, z_1, z_2, ..., z_{n-1}; \varepsilon) > 1 - \eta$, whenever $j, p \ge N$, $k, q \ge M$ and for nonzero $z_1, z_2, ..., z_{n-1} \in X$.

4. MAIN RESULTS

4.1. Δ_m^n -Ideal Convergence

Recently B.Hazarika[4] studied the concept of Δ^n -Ideal convergence and Δ^n -Ideal Cauchy Double sequences in random 2- normed spaces and proved some interesting theorem. In this section we define Δ_m^n -Ideal Convergent sequences in the random n-normed (X, F, *). Also we obtained some basic properties of this notion in random n-normed space.

Definition 4.1. A sequence $x = (x_{jk})$ in a random n-normed space (X, F, *) is said to be Δ_m^n convergent to $l \in X$ with respect to F if for each $\varepsilon > 0, \eta \in (0,1)$, there exists a positive integer n_0 such that $F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \varepsilon) > 1 - \eta$, whenever $j, k \ge n_0$ and for nonzero $z_1, z_2, ..., z_{n-1} \in X$. In this case we write $F - \lim_{i \neq k} \Delta_m^n x_{jk} = l$.

Definition 4.2. A sequence $x = (x_{jk})$ in a random n-normed space (X, F, *) is said to be Δ_m^n -Cauchy with respect to F if for each $\varepsilon > 0, \eta \in (0,1)$, there exists a positive integer $M = M(\varepsilon, z_1, z_2, ..., z_{n-1})$ and $N = N(\varepsilon, z_1, z_2, ..., z_{n-1})$ such that $F(\Delta_m^n x_{jk} - \Delta_m^n x_{pq}, z_1, z_2, ..., z_{n-1}; \varepsilon) > 1 - \eta$, whenever $j, p \ge M$ and $k, q \ge N$ and for nonzero $z_1, z_2, ..., z_{n-1} \in X$.

Definition 4.3. A sequence $x = (x_{jk})$ in a random n-normed space (X, F, *) is said to be $\Delta_m^n - I$ - convergent to $l \in X$ with respect to F if for each $\varepsilon > 0, \eta \in (0,1)$ and nonzero $z_1, z_2, ..., z_{n-1} \in X$ such that

$$\{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \varepsilon) \le 1 - \eta\} \in I$$

or equivalently

$$\{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \varepsilon) > 1 - \eta\} \in F.$$

Definition 4.4. A sequence $x = (x_{jk})$ in a random n-normed space (X, F, *) is said to be $\Delta_m^n - I$ -Cauchy with respect to F if for each $\varepsilon > 0, \eta \in (0,1)$, and nonzero $z_1, z_2, ..., z_{n-1} \in X$ there exist $M = M(\varepsilon, z_1, z_2, ..., z_{n-1})$ and $N = N(\varepsilon, z_1, z_2, ..., z_{n-1})$ such that

$$\{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - \Delta_m^n x_{pq}, z_1, z_2, ..., z_{n-1}; \varepsilon) \le 1 - \eta\} \in I,$$

whenever $j, p \ge N$, $k, q \ge M$,

or equivalently

$$\{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - \Delta_m^n x_{pq}, z_1, z_2, ..., z_{n-1}; \varepsilon) > 1 - \eta\} \in F.$$

Theorem 4.1. Let (X, F, *) be a random n-normed space. If $x = (x_{jk})$ is a double sequence in X such that $I^{2RnN} - \lim \Delta_m^n x_{jk} = l$ exists, then it is unique.

Proof. Suppose that there exist elements $l_1, l_2(l_1 \neq l_2)$ in X such that $I^{2RnN} - \lim_{j,k\to\infty} \Delta_m^n x_{jk} = l_1$ and $I^{2RnN} - \lim_{i,k\to\infty} \Delta_m^n x_{jk} = l_2$.

Let $\varepsilon > 0$ be given. Choose a > 0 such that $(1-a)(1+a) > 1-\varepsilon$.

Then for any t > 0 and for non zero $z_1, z_2, ..., z_{n-1} \in X$ we define

$$K_1(a,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l_1, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) \le 1 - a\},\$$

[4.1]

$$K_2(a,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l_2, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) \le 1 - a\}.$$

Since $I^{2RnN} - \lim_{j,k\to\infty} \Delta_m^n x_{jk} = l_1$ and $I^{2RnN} - \lim_{j,k\to\infty} \Delta_m^n x_{jk} = l_2$ we have $K_1(a,t)$ and $K_2(a,t) \in I$ for all $t \ge 0$. Now let $K(a,t) = K_1(a,t) \cup K_2(a,t)$, then it is easy to observe that $K(a,t) \in I$. But we have $K^c(a,t) \in F$. Now if $(j,k) \in K^c(a,t)$, then we have

$$F(l_1 - l_2, z_1, z_2, ..., z_{n-1}, t) \ge F(\Delta_m^n x_{jk} - l_1, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) * F(\Delta_m^n x_{jk} - l_2, z_1, z_2, ..., z_{n-1}; \frac{t}{2})$$

> $(1 - a) * (1 - a).$

It follows from [4.1] that

$$F(l_1 - l_2, z_1, z_2, ..., z_{n-1}, t) = 0$$

for all t > 0 and non zero $z_1, z_2, ..., z_{n-1} \in X$. Hence $l_1 = l_2$.

Theorem 4.2. Let (X, F, *) be a random n-normed space and $x = (x_{jk})$ and $y = (y_{jk})$ be two double sequences in X.

1. If
$$I^{2RnN} - \lim_{j,k\to\infty} \Delta_m^n x_{jk} = l$$
 and $c(\neq 0) \in \mathsf{R}$, then $I^{2RnN} - \lim_{j,k\to\infty} c\Delta_m^n x_{jk} = cl$.

2. If
$$I^{2RnN} - \lim_{j,k\to\infty} \Delta_m^n x_{jk} = l_1$$
 and $I^{2RnN} - \lim_{j,k\to\infty} \Delta_m^n y_{jk} = l_2$ then
 $I^{2RnN} - \lim_{j,k\to\infty} \Delta_m^n (x_{jk} + y_{jk}) = l_1 + l_2.$

Proof of the theorem is straightforward, thus omitted.

Theorem 4.3. Let (X, F, *) be a random n-normed space and $x = (x_{jk})$ be double sequences in X such that $F \lim \Delta_m^n x_{jk} = l$, then $I^{2RnN} - \lim \Delta_m^n x_{jk} = l$.

Proof Let $F \lim \Delta_m^n x_{jk} = l$. Then for every $0 < \varepsilon < 1, t > 0$ and non zero $z_1, z_2, ..., z_{n-1} \in X$, there is a positive integer $M = M(\varepsilon, z_1, z_2, ..., z_{n-1})$ and $N = N(\varepsilon, z_1, z_2, ..., z_{n-1})$ such that

$$F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; t) > 1 - \varepsilon,$$

for all $j \ge M$ and $k \ge N$. Since the set

$$K(\varepsilon,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{ik} - l, z_1, z_2, \dots, z_{n-1}; t) \le 1 - \varepsilon\}$$

$$\subset N \times N - \{(i_{i+1}, i_{k+1}), (i_{i+2}, i_{k+2}), \dots\}.$$

Also since *I* is an admissible ideal, and consequently we have $K(\varepsilon, t) \in I$. This shows that $I^{2RnN} - \lim \Delta_m^n x_{ik} = l$.

Theorem 4.4. Let (X, F, *) be a random n-normed space and $x = (x_{jk})$ be double sequences in X then $I^{2RnN} - \lim \Delta_m^n x_{jk} = l$ if and only if there exists a subset $K \subseteq N \times N$ such that $K \in F$ and $F - \lim \Delta_m^n x_{jk} = l$.

Proof. Suppose first that $I^{2RnN} - \lim \Delta_m^n x_{jk} = l$. Then for any t > 0, r=1,2,3,... and nonzero $z_1, z_2, ..., z_{n-1} \in X$, let

$$B(r,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; t) > 1 - \frac{1}{r}\}$$

$$K(r,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; t) \le 1 - \frac{1}{r}\}$$

Since $I^{2RnN} - \lim \Delta_m^n x_{jk} = l$ it follows that $K(r, t) \in I$. Now for t > 0 and r = 1, 2, 3, ... we observe that

$$B(r,t) \supset B(r+1,t)$$
$$B(r,t) \in F.$$
 [4.2]

and

Now we have to show that, for $k \in B(r,t)$, $F \lim \Delta_m^n x_{jk} = l$. Suppose that for $k \in B(r,t)$, (x_{jk}) is not convergent to l with respect to F. Then there exists some s > 0 such that $\{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; t) \le 1-s\}$

and $s > \frac{1}{r}, r = 1, 2, 3, ...$

Then we have $B(s,t) \in I$.

Furthermore, $B(r,t) \subset B(s,t)$ implies that $B(r,t) \in I$, which contradicts [4.2] as $B(r,t) \in F$. Hence $F - \lim \Delta_m^n x_{ik} = l$.

Conversely, suppose that there exists a subset $K \subseteq N \times N$ such that $K \in F$ and $F \lim \Delta_m^n x_{jk} = l$. Then for ever $Y = 0 < \varepsilon < 1, t > 0$ and non zero $z_1, z_2, ..., z_{n-1} \in X$, we can find out a positive integer $M = M(\varepsilon, z_1, z_2, ..., z_{n-1})$ such that

$$F(\Delta_{m}^{n} x_{jk} - l, z_{1}, z_{2}, ..., z_{n-1}; t) > 1 - \varepsilon$$

for all $j, k \ge M$. If we take

$$K(\varepsilon,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; t) < 1 - \varepsilon\}$$

then it is easy to see that

$$K(\varepsilon,t) \subset N \times N - \{(n_{i+1}, n_{k+1}), (n_{i+2}, n_{k+2}), \dots\}$$

and since *I* is a admissible ideal, consequently $K(\varepsilon, t) \in I$.

Hence $I^{2RnN} - \lim \Delta_m^n x_{jk} = l$.

Theorem 4.5. Let (X, F, *) be a random n-normed space. Then $x = (x_{jk})$ in X then $\Delta_m^n - I -$ convergent if and only if it is $\Delta_m^n - I -$ Cauchy.

Proof Let (x_{jk}) be a $\Delta_m^n - I$ - convergent sequence in X. We assume that $I^{2RnN} - \lim \Delta_m^n x_{jk} = l$. Let $\varepsilon > 0$ be given. Choose a > 0 such 4.1 is satisfied. For t > 0 and non zero $z_1, z_2, ..., z_{n-1} \in X$ define

$$A(a,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) \le 1 - a\}.$$

Then

$$A^{c}(a,t) = \{(j,k) \in N \times N : F(\Delta_{m}^{n} x_{jk} - l, z_{1}, z_{2}, ..., z_{n-1}; \frac{t}{2}) > 1 - a\}.$$

Since $I^{2RnN} - \lim \Delta_m^n x_{jk} = l$ it follows that $A(a,t) \in I$ and consequently $A^c(a,t) \in F$. Let $p, q \in A^c(a,t)$. Then

$$F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) > 1 - a.$$
[4.3]

If we take

$$B(\varepsilon,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - \Delta_m^n x_{pq}, z_1, z_2, ..., z_{n-1}; t) \le 1 - \varepsilon\},\$$

then to prove the result it is sufficient to prove that $B(\varepsilon,t) \subseteq A(a,t)$. Let $(j,k) \in B(\varepsilon,t) \cap A^{c}(a,t)$, then for non zero $z_1, z_2, ..., z_{n-1} \in X$.

$$F(\Delta_m^n x_{jk} - \Delta_m^n x_{pq}, z_1, z_2, ..., z_{n-1}; t) \le 1 - \varepsilon$$

and

$$F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) > 1 - a$$
[4.4]

Then by definition 4.1, 4.3 and 4.4 we get

$$1 - \varepsilon \ge F(\Delta_m^n x_{jk} - \Delta_m^n x_{pq}, z_1, z_2, ..., z_{n-1}; t)$$

$$\ge F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) * F(\Delta_m^n x_{pq} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2})$$

$$> (1 - a) * 1 - a) > (1 - \varepsilon)$$

which is not possible. Thus $B(\varepsilon,t) \subset A(r,t)$. Since $A(a,t) \in I$, it follows that $B(\varepsilon,t) \in I$. This shows that (x_{ik}) is $\Delta_m^n - I$ - Cauchy.

Conversely, suppose (x_{jk}) is $\Delta_m^n - I - Cauchy$ but not $\Delta_m^n - I - convergent$. Then there exists positive integer p, q and non zero $z_1, z_2, ..., z_{n-1} \in X$ such that.

$$A(\varepsilon,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - \Delta_m^n x_{pq}, z_1, z_2, ..., z_{n-1}; t) \le 1 - \varepsilon\}.$$

Hence, $A(\varepsilon, t) \in I$, so we have

$$A^{c}(\varepsilon,t) \in F.$$

$$[4.5]$$

For any a > 0 such that 4.1 is satisfied, we take

$$B(a,t) = \{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \frac{l}{2}) > 1 - a\}$$

If $(p,q) \in B(r,t)$, then

$$F(\Delta_m^n x_{pq} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) > 1 - a.$$

Since $F(\Delta_m^n x_{jk} - \Delta_m^n x_{pq}, z_1, z_2, ..., z_{n-1}; t)$

$$\geq F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) * F(\Delta_m^n x_{pq} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2})$$

 $>(1-a)*(1-a)>1-\varepsilon$,

we have

$$\{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - \Delta_m^n x_{pq}, z_1, z_2, ..., z_{n-1}; t) \le 1 - \varepsilon\} \in I,$$

that is, $A^{c}(\varepsilon,t) \in I$, which contradicts [4.5]. Hence (x_{ik}) is $\Delta_{m}^{n} - I$ - convergent.

Combining Theorem 4.4 and 4.5 we get the following.

Corollary 4.6. Let (X, F, *) be a random n-normed space. Then $x = (x_{jk})$ be a double sequence in *X*. Then, the following statements are equivalent:

- 1. x is $\Delta_m^n I$ convergent,
- 2. x is $\Delta_m^n I$ Cauchy, and
- 3. there exists a subset $K \subseteq \mathbb{N} \times \mathbb{N}$ such that $K \in F$ and $F \lim \Delta_m^n x_{ik} = l$.

Theorem 4.7. Let (X, F, *) be a random n-normed space and $x = (x_{jk})$ be a double sequence in X. Let I be a non trivial ideal in N. If there is a $\Delta_m^n - I$ - convergent sequence $y = (y_{jk})$ in X such that $\{(j,k) \in N \times N : F(\Delta_m^n y_{jk} \neq \Delta_m^n x_{jk})\} \in I$, then x is also $\Delta_m^n - I$ - convergent in X.

Proof. Suppose that $\{(j,k) \in N \times N : F(\Delta_m^n y_{jk} \neq \Delta_m^n x_{jk}) \in I$, and $I^{2RnN} - \lim \Delta_m^n y_{jk} = l$. Let $0 < \varepsilon < 1$ be given. Then, for t > 0 and non-zero $z_1, z_2, ..., z_{n-1} \in X$, we get

$$\{(j,k) \in N \times N : F(\Delta_m^n y_{jk} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) \le 1 - \varepsilon\} \in I.$$

for every $0 < \varepsilon < 1$,

$$\{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) \le 1 - \varepsilon\}$$

$$\subseteq \{(j,k) \in N \times N : F(\Delta_m^n y_{ik} \neq \Delta_m^n x_{ik})\}$$

$$\cup \{ (j,k) \in N \times N : F(\Delta_m^n y_{jk} - l, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) \le 1 - \varepsilon \}.$$
[4.6]

As both the sets of right hand side of [4.6] are in I, we have that

$$\{(j,k) \in N \times N : F(\Delta_m^n x_{jk} - l, z_1 - l_2, z_1, z_2, ..., z_{n-1}; \frac{t}{2}) \le 1 - \varepsilon\} \in I.$$

5. ACKNOWLEDGEMENT: The authors would like to record their gratitude to the reviewer for her/his careful reading and for making some useful corrections which improved the presentation of the paper.

REFERENCES

[1] A. Esi and M. Kemal Özdemir: "On lacunary Statistical Convergence in Random n-Normed Space", *Annals of Fuzzy Mathematics and Informatics*, **2013**, 5(2), 429-439.

[2] A. N. Sherstnev: "Random Normed Spaces", *Problems of Completeness Kazan Gos. Univ. Uccen. Zap.*, **1962**, 122, 3-20.

[3] B.C.Tripathy: "Statistically Convergent Double Sequences", *amkang J.Math.*, **2006**, 32(2), 211-221.

[4] B. Hazarika: "On Generalized Difference Ideal Convergence in Random 2-Normed Spaces", *Filomat*, **2012**, 26(6), 1273-1282.

[5] Bromwich T.J.I.: "An Introduction to the Theory of Infinite Series", *MacMillan and Co.Ltd., New York* **1965**.

[6] E.Savas: "On Generalized Double Statistical Convergence in a Random 2-Normed Space", *Journal of Inequalities and Applications* **2012**, 209, 1-11.

[7]F.Moricz and B.E.Rhoades: "Almost Convergence of Double Sequences and Strong Regularity of Summability Matrices", *Math. Proc. Camb. Phil.*. Soc. **1988**, 104, 283-294.

[8] H.Fast: "Sur la Convergence Statistiue", Collog. Math. 1951, 2, 241-244.

[9] H.Steinhaus: Buck: "Sur la Convergence Ordinaire et la Convergence Asymptotique", *Colloqium Mathematicum* **1951**, 2, 73-74.

[10] I. Golet: "On Probabilistic 2-Normed Spaces", Novi Sad J. Math. 2006, 35, 95-102.

[11] I.J.Schoenberg: "The integrability of certain functions and related sumability methods", *Amer. Math. Monthly* **1959**, 66, 361-375.

[12] J.S.Connor: "The Statistical anp Strong P-Cesaro Convergence of Sequences", *Analysis* **1988**, 8, 47-63.

[13] K. Menger: "Statistical Metrices", Proc. Nat. Acad. Sci., U.S.A. 1942, 28, 535-537.

[14] M.S. Matveichuk: "Random Norm and Characteristic Probabilities on Orthoprojections Associated with Factors", *Probabilistic Methods and Cybernetics Kazan University* **1971**, 9, 73-77.

[15] M. Basarir and O. Sonalcan: "On Some Double Seuence Spaces", *J.Indian Acad.Math.* **1999**, 21(2), 193-200.

[16] M.Gurdal and S. Pehlivan: "The Statistical Convergence in 2-Banach Spaces", *Novi Sad j. Math.* **2006**, 35, 95-102.

[17] M. Mursaleen and Abdullah Alotaibi: "On *I* – Convergence in Random 2-Normed Spaces", *Mathematica Slovaca* **2011**, 61, 933-940.

[18] P.Das, Kostyrko.P, Wilczynski.W, and Malik.P, : " I and I^* convergence of double sequences", *Math. Slovaca*, **2008**, 58, 605-620.

[19] P. Kostryko, T. S alat and W. Wilczy n' ski: "*I* -convergence", *Real Anal. Exchange*, **2000**, 26(2), 669-686.

[20] R.C. Buck: "Generalized Asymptote Density", Amer J. of Math 1953, 75, 335-346.

[21] S. Gähler : "2-Metrische Räume and Ihre Topologeische Struktur", *Math. Nachr.* **1963**, 26, 115-148.

[22] S. Karakus: The Statistical Convergence in Normed Spaces, Math. Commun. 2007, 12, 11-23.

[23] S. A. Mohiuddine, A. Alotaibi and Saud M. Alsulami: "Ideal Convergence of Double Sequences in Random 2-Normed Spaces", *Advances in Difference Equations* **2012**, 149, 1-8.

[24] V. Kumar: "On I and I^* -convergence of double sequences", *Math. Commun.* 2007, 12, 171-181.

[25] Vakeel A. Khan and Khalid Ebadullah: "On Some *I* -Convergent Sequence Spaces Defined by a Modulus Function", *Theory and Applications of Mathematics and Computer Science*, **2011**, 1(2), 22-30.

[26] Vakeel A.Khan, Khalid Ebadullah: "*I*-Convergent difference sequence spaces defined by a sequence of modulii", *J. Math. Comput. Sci.* **2**(2),265-273,(2012).

[27] Vakeel A. Khan, Khalid Ebadullah and Ayaz Ahmad: I-Pre-Cauchy Sequences and Orlicz functions, *Journal of Mathematical Analysis*, **2012**, 3(1),21-26.

[28] Vakeel A.Khan, Yasmeen and Ayhan Esi: "Intuitionistic Fuzzy Zweier I-convergent Double Sequence Spaces", *New Trends in Mathematical Sciences*, **2016**, 4(2),240-247.

[29] Vakeel A.Khan, Yasmeen and Ayhan Esi: "Intuitionistic Fuzzy Zweier I-convergent Sequence Spaces Defined by Orlicz Function", *Annals of Fuzzy Mathematics and Informatics*, **2016**, 12(2), 469-478.

[30] Vakeel A.Khan and Yasmeen: "Intuitionistic Fuzzy Zweier I-convergent double Sequence Spaces Defined by Modulus Function", *Cogent Mathematics (Taylors and Francis)*, **2016**, 3(2).

[31] Vakeel A.Khan, Yasmeen ans Ayhan Esi: "On paranorm type Intuitionistic Fuzzy Zweier *I* -convergent Sequence Spaces", *Annals of Fuzzy Mathematics and Informatics*, **2017**, 13(1), 135-143.

[32] Vakeel A.Khan and Nazneen Khan: "On Zweier I-convergent Double Sequence Spaces", *Filomat*, **2016**, 30(12), 3361-3369.

[33] Vakeel A.Khan, Yasmeen ,Henna Altaf, and Ayaz ammad: "Intuitionistic Fuzzy *I* - convergent double Sequence Spaces Defined by Compact operator", *Cogent Mathematics* (*Taylors and Francis*), **2016**, 3(3).

[34] Vakeel A.Khan : "On some I-convergent sequence spaces defined by a compact operator", *Annals of the University of Craiova, Mathematics and Computer Science Series*, **2016**, 43(2), 141-150.