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Abstract: The paper investigates the application and generalization of the weighted mean and median by using 

continuous and convex functions. The paper offers a clear and systematic approach to the notion of weighted medians.  

As a result, essential characteristics of weighted medians are presented better.  
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1. Introduction 

 

Let 2n   be an integer, let 
1, , nx x   be points, and let 

1, , [0,1]nw w   be coefficients satisfying 

=1
=1

n

ii
w , as such are usually called weights. 

       An arithmetic mean of the given points is the inserted point  

          

=1

1
= .

n

i

i

x x
n
                                                                                                                                          (1) 

       A weighted (arithmetic) mean of the given points respecting the given weights is the inserted point  

          

=1

= .
n

i i

i

x w x                                                                                                                                         (2) 

       If the points 
ix  are sorted from smaller to larger, we are able to observe medians. Suppose that 

1 < < nx x . If 

n  is odd as = 2 1n k − , then the middle point 
kx  is a median. If n  is even as = 2n k , then the middle points 

kx  

and 
1kx +
 are a lower and upper median. Weighted medians can be defined as follows. 

       If for a weight 
kw , where {1, , }k n , applies 

          

=1 =

1 1
> and > ,

2 2

k n

i i

i i k

w w                                                                                                                 (3)                               

then the point 
kx  is a weighted median. In this case, kw  is unique and positive. 

       If for weights kw  and 
lw , where {1, , 1}k n −  and { 1, , }l k n + , apply  

          

=1 =

1 1
= and =

2 2

k n

i i

i i l

w w                                                                                                                   (4) 

with the integers k  and l  as the smallest and largest possible, then the points 
kx  and 

lx  are a lower and upper 

weighted median. In this case, kw  and 
lw  are unique and positive, and if 2l k + , then 1 1= = = 0k lw w+ − . 

       The conditions in equation (3) and equation (4) exclude each other. If all weights are the same, 
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1 = = =1/nw w n , then the weighted arithmetic mean coincides with arithmetic mean, and the weighted medians 

coincide with medians. 

 

2. Weighted Mean and Median as the Minimum Points 

       In this section, we employ a collection of functions defined on  whose members have a global minimum. Let 

1, , nx x   be points, let 
1, , 0na a   be coefficients of which at least one is positive, let 1p   and > 0q  

be exponents, and let  

          

/

=1

( ) = | | .

q p
n

p

i i

i

f x a x x
 

− 
 
                                                                                                           (5) 

Including the limit case by letting p  tends to infinity, we get  

          
1 1( ) = (max{ | |, , | |}) .q

n nf x a x x a x x− −                                                                               (6) 

This limit is a consequence of the transition from the p -norm to  max-norm, see equations (9) and (10). The above 

functions are continuous and satisfy | | ( ) =lim x f x→  , so they have a global minimum. The related functions 

1/= qg f  are convex. The minimum points of f  and g  coincide because a power function with a positive exponent 

is increasing on the interval of nonnegative numbers. When 1q  , the functions in equations (5) and (6) are convex 

as the compositions of increasing convex and convex functions ( =f h g , where ( ) = qh x x  for 0x  ). If > 1p  

and > 1q , the observed functions are strictly convex. 

       We point out the basic topological properties of convex functions. Let 
*I I   be intervals with the 

nonempty interior, and let :f I →  be a convex function. Then f  is continuous on the interior of I , and each 

its local minimum is global. As for the minimum, if 
* *x I  is a point so that 

*( )f x  is a minimum value on 
*I , 

then 
*( )f x  is minimum value on I . 

       Let c  be a coefficient, let > 1p  be an exponent, and let ( ) =| |ph x x c− . The function h  is strictly 

convex, and differentiable at each point x  with the derivative  

          

| |
if

( ) = .

0 if =

px c
p x c

h x x c

x c

 −


 −



  

The derivative of the convex function ( ) =| |h x x c−  is included in first line of the above equation with = 1p . 

       In what follows, we are discussing global minimum points of the functions in equations (5) and (6). The interval 

which includes the given points 
ix  comes into play. If we denote  

          (1) 1 ( ) 1= min{ , , } and = max{ , , },n n nx x x x x x   

then the closed interval (1) ( )[ , ]nx x  contains the global minimum points of the above functions. Further, it all depends 

on the exponent p . 

       A strict global minimum point exists in the case > 1p . 

 

Lemma 2.1.  Let 
1, , nx x  be points of , let 

1, , 0na a   be coefficients such that 
=1

= > 0
n

ii
a a , let 

> 1p  and > 0q  be exponents, and let  

          

=1

( ) = | | .

q
n

p

i i

i

f x a x x
 

− 
 
   

       Then a strict global minimum point of f  exists in the interval (1) ( )[ , ]nx x .  
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Proof.  We are looking for the unique minimum point of the strictly convex function  

          
1/

=1

( ) = ( ( )) = | | .
n

q p

i i

i

g x f x a x x−   

Using the fact that at least one of the coefficients 
ia  is positive, and applying the derivative  

          
=1

| |
( ) =

pn
i

i

i i

x x
g x p a

x x

−


−
   

outside the interval 
(1) ( )[ , ]nx x , it follows that ( ) < 0g x  if 

(1)( , )x x − , and ( ) > 0g x  if 
( )( , )nx x + . 

The strictly convex function g  decreases on 
(1)( , )x−  and increases on 

( )( , )nx + , and so it reaches a global 

minimum at a unique point of the remaining part 
(1) ( )[ , ]nx x . The same is true for the function f .                          

 

       The function f  in equation (6) also has a strict global minimum point in the interval 
(1) ( )[ , ]nx x . 

       The weighted mean plays a role in the case = 2p . 

 

Lemma 2.2.  1Let 
1, , nx x  be points of , let 

1, , 0na a   be coefficients such that 
=1

= > 0
n

ii
a a , let 

> 0q  be an exponent, and let  

          
2

=1

( ) = | | .

q
n

i i

i

f x a x x
 

− 
 
   

       Then a strict global minimum point of f  exists as the weighted mean of the points 
ix  respecting the weights 

= /i iw a a .  

Proof.  Using the sums  

          
2

=1 =1

= and =
n n

i i i i

i i

b a x c a x    

as the coefficients in the presentation  

          

2 2
1/ 2( ) = ( ( )) = 2 = ,q b ac b

g x f x ax bx c a x
a a

− 
− + − + 

 
  

we can conclude that the unique minimum point of the functions g  and f  is  

          

=1 =1

1
= = = ,

n n

i i i i

i i

b
x a x w x

a a
    

representing the weighted mean of the points 
ix  respecting the weights 

iw .                                                               

 

       The weighted medians occur in the case = 1p . 

 

Lemma 2.3.  2Let 1 < < nx x  be strictly ordered points of , let 1, , 0na a   be coefficients such that 

=1
= > 0

n

ii
a a , let > 0q  be an exponent, and let  

          

=1

( ) = | | .

q
n

i i

i

f x a x x
 

− 
 
   

       If the point 
kx  exists as a weighted median of the points 

ix  respecting the weights = /i iw a a , then 
kx  is a 

strict global minimum point of f . 
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       If the points 
kx  and 

lx  exist as a lower and upper weighted median, then each element of [ , ]k lx x  is a global 

minimum point of f .  

Proof.  We include the weights 
iw  through the function  

          
1/

=1

1
( ) = ( ( )) = | |,

n
q

i i

i

g x f x w x x
a

−   

which is convex and so continuous on , and differentiable on 
1\{ , , }nx x  with the derivative  

          

=1

| |
( ) = .

n
i

i

i i

x x
g x w

x x

−


−
   

Obviously, 
=1

( ) = = 1
n

ii
g x w − −  if 

1<x x , and 
=1

( ) = =1
n

ii
g x w   if > nx x . Let   be a positive number 

so that for each point 
kx  the interval ( , )k kx x − +  does not contain any point 

ix  other than 
kx . 

       The derivative of the function g  around a point 
kx  stands as  

          

1

=1 =

=1 = 1

if ( , )

( ) = .

if ( , )

k n

i i k k

i i k

k n

i i k k

i i k

w w x x x

g x

w w x x x





−

+


−  −


 

 −  +


 

 
                                                                          (7) 

Suppose that 
kx  is a weighted median. Applying the conditions in formula (3) to the derivative in formula (7), we 

obtain that ( ) < 0g x  if ( , )k kx x x − , and ( ) > 0g x  if ( , )k kx x x  + . Since g  is continuous, 
kx  is a 

strict minimum point on ( , )k k k kx x − + . Since g  is convex, 
kx  is also a strict minimum point on . Thus, 

kx  

is a strict global minimum point of the functions g  and f . 

       The derivative of the function g  around points 
kx  and 

lx , where 1l k +  and 
1 1= = = 0k lw w+ −

 if 

2l k + , stands as  

          

1

=1 =

=1 =

=1 = 1

if ( , )

( ) = if ( , ) .

if ( , )

k n

i k i k k

i i l

k n

i i k l

i i l

k n

i l i l l

i i l

w w w x x x

g x w w x x x

w w w x x x





−

+


− −  −




 − 



+ −  +


 

 

 

                                                                 (8) 

Suppose that 
kx  and 

lx  are a lower and upper weighted median. Applying the conditions in formula (4) to the 

derivative in formula (8), we obtain that ( ) < 0g x  if ( , )k kx x x − , ( ) = 0g x  if ( , )k lx x x , and 

( ) > 0g x  if ( , )l lx x x  + . Each element of [ , ]k lx x  is a minimum point of g  on ( , )k lx x − + , and 

consequently on . Thus, each such element is a global minimum point of g  and f .                                             

 

Remark 2.4.  3If at least two of the points 
ix  are distinct, the functions used in the above lemmas are positive. 

Assuming that < 0q , a global maximum point appears instead of global minimum point.   

 

       In the last decades, weighted median algorithms and filters are widely used in the science, engineering and 

economics. Three algorithms for the weighted median problem are presented in [1]. Improved performances of the 

weighted median filter for the image processing are presented in [2]. 
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3. Main Results 

 

       The generalization of the previous section will be done in the space 
m

 assuming that 1m  , and we will utilize 

a collection of functions defined on 
m

 that have a global minimum. 

       Basic norms on the space 
m

 are p -norms generated by real numbers 1p  . The p -norm of a point 

1= ( , , ) m

mT x x   is  

          

1/

=1

= | | ,

p
m

p

p i

i

T x
 
 
 
                                                                                                                     (9) 

and the  max-norm as the limit case when p  tends to infinity is  

          
1= max{| |, ,| |}.mT x x

                                                                                                       (10) 

Let 
1, , m

nT T   be points, let 
1, , 0na a   be coefficients of which at least one is positive, let 1p   and 

> 0q  be exponents, and let  

          

/

=1

( ) = .

q p
n

p

i i p

i

f T a T T
 

− 
 
                                                                                                      (11) 

Sending p  to infinity, it follows that  

          
1 1( ) = (max{ , , }) .q

n nf T a T T a T T − −                                                                   (12) 

The above functions are continuous and satisfy ( ) =lim T f T→   for every norm on 
m

, thus each one of them 

attains a global minimum value. 

 

       Problems relating to the global minimum of convex functions can be found in [3, chapter The Variational 

Approach of PDE]. Some algorithms for calculating extremum points of convex functions are presented in [5]. 

Optimization problems concerning convex functions are discussed in [4]. 

 

       Let 
1= ( , , )mA a a  and 

1= ( , , )mB b b  be points in 
m

, and let  be the partial order relation of points 

in 
m

 stated by  

          
1 1if and only if , , .m mA B a b a b    

The above relation generates the closed interval between A  and B  in the form of the m -fold Cartesian product of 

the closed intervals [ , ]j ja b ,  

           
1 1, = [ , ] [ , ].m mA B a b a b    

 

       Throughout the section, the coordinates of the points 
iT  ( = 1, ,i n ) will be denoted with  

          1= ( , , ),i i imT x x   

the smallest and largest of the j -coordinates ( = 1, ,j m ) of the points iT  with  

          (1) 1 ( ) 1= min{ , , } and = max{ , , },j j nj n j j njx x x x x x  

and the points with the smallest and largest coordinates of the points 
iT  with  

          (1) (1)1 (1) ( ) ( )1 ( )= ( , , ) and = ( , , ).m n n n mT x x T x x   

 

Theorem 3.1.  4Let 
1, , nT T  be points of 

m
, let 

1, , 0na a   be coefficients such that 
=1

= > 0
n

ii
a a , let 

> 1p  and > 0q  be exponents, and let  
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=1

( ) = .

q
n

p

i i p

i

f T a T T
 

− 
 
   

       Then a strict global minimum point of f  exists in the interval 
(1) ( ), nT T .  

Proof.  The function 
1/= qg f  is strictly convex. Its coordinate representation  

           1

=1 =1

( , , ) = | |
n m

p

m i j ij

i j

g x x a x x−   

can be presented as the sum of the one variable strictly convex functions  

           

=1

( ) = | |
n

p

j i ij

i

g x a x x−   

in the form of  

          1

=1

( , , ) = ( ).
m

m j j

j

g x x g x                                                                                                              (13) 

The function jg  has a strict global minimum point in the interval (1) ( )[ , ]j n jx x  by Lemma 2.1. Considering equation 

(13), the function g  has a strict global minimum point in the m -fold product 

(1)1 ( )1 (1) ( ) (1) ( )[ , ] [ , ] = ,n m n m nx x x x T T  .  The latter also applies to the function f .                                   

   

       The function f  in equation (12) also has a strict global minimum point in the interval (1) ( ), nT T . 

       A special case of the above theorem for = 2p  specifically provides a strict global minimum point as the 

weighted median. 

 

Theorem 3.2.  5Let 
1, , nT T  be points of 

m
, let 

1, , 0na a   be coefficients such that 
=1

= > 0
n

ii
a a , let 

> 0q  be an exponent, and let  

          
2

2

=1

( ) = .

q
n

i i

i

f T a T T
 

− 
 
   

       Then a strict global minimum point of f  exists as the weighted mean of the points 
iT  respecting the weights 

= /i iw a a .  

Proof.  Putting 
1/= qg f , we can use equation (13) with the functions  

          
2

=1

( ) = | | .
n

j i ij

i

g x a x x−   

Similarly as in the proof of Lemma 2.2, including the sums  

          
2

=1 =1

= and = ,
n n

j i ij j i ij

i i

b a x c a x    

it follows that  

          

2 2

( ) = ,
j j j

j

b ac b
g x a x

a a

− 
− + 

 
  

which indicates that the function jg  has the unique minimum point  

          

=1 =1

1
= = = .

n n
j

j i ij i ij

i i

b
x a x w x

a a
    

According to equation (13), the unique minimum point of the function g , and consequently the function = qf g , is  
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          1 1

=1 =1

= ( , , ) = ( , , ) = ,
n n

m i i im i i

i i

T x x w x x wT    

as the weighted mean of the points 
iT  respecting the weights 

iw .                                                                            

   

       In the next theorem, we will use the strict partial order relation of points in 
m

 by means of  

          
1 1if and only if < , , < .m mA B a b a b   

Employing the partial and strict partial order relation, we can generalize Lemma 2.3. The case = 1p  for multivariate 

functions also refers to weighted medians. 

  

Theorem 3.3.  6Let 
1 nT T  be strictly ordered points of 

m
, let 

1, , 0na a   be coefficients such that 

=1
= > 0

n

ii
a a , let > 0q  be an exponent, and let  

          1

=1

( ) = .

q
n

i i

i

f T a T T
 

− 
 
   

       If the point 
kT  exists as a weighted median of the points 

iT  respecting the weights = /i iw a a , then 
kT  is a 

strict global minimum point of f . 

       If the points 
kT  and 

lT  exist as a lower and upper weighted median, then each element of ,k lT T  is a global 

minimum point of f .  

Proof.  We can consider the related function 
1/= (1/ ) qg a f , and use equation (13) with the functions  

          

=1

( ) = | | .
n

j i ij

i

g x w x x−   

Since 
1 nT T , the points 

ijx  satisfy the strict order  

          1 < <j njx x                                                                                                                                    (14) 

for every = 1, ,j m . Therefore, we have the following two convenient cases. 

       The point kjx  is a weighted median of the points ijx  respecting the weights 
iw . Then kjx  is a strict global 

minimum point of jg  by Lemma 2.3. This applies to each index j . Thus the point 
kT  is a weighted median of the 

points 
iT  respecting the weights 

iw , and 
kT  is a strict global minimum point of g  by equation (13). 

       The points kjx  and ljx  are a lower and upper weighted median. Then each element of [ , ]kj ljx x  is a global 

minimum point of jg  by Lemma 2.3. It refers to each j . Thus the points 
kT  and 

lT  are a lower and upper weighted 

median, and each element of 
1 1[ , ] [ , ] = ,k l km lm k lx x x x T T   is a global minimum point of g  by equation 

(13).                                                                                                                                                                  

   

Remark 3.4.  7If at least two of the points 
iT  are distinct, then using < 0q  in the above theorems, we have a global 

maximum point instead of global minimum point.   
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4. Examples 

 

Example 4.1.  8Find a global minimum value of the function  

          
2 2 2 2 2 2 5/2( , ) = (2(| | | 1| ) 3(| 2 | | | ) 4(| 3 | | 5 | )) .f x y x y x y x y+ − + − + + − + +    

       According to Theorem 3.2, we have to determine the weighted mean of the points  

          
1 2 3= (0,1), = (2,0), = (3, 5)T T T −   

respecting the weights  

          1 2 3

2 3 4
= , = , = .

9 9 9
w w w   

Using equation (2), we get the weighted mean  

          

3

=1

= = (2, 2)i i

i

T wT −   

as the unique minimum point, and so the strict global minimum value  

          
5/2(2, 2) = 78 .f −   

   

Example 4.2.  9Find a global minimum value of the function  

          
1/3( , ) = (4(| | | |) 2(| 2 | | 2 |) 7(| 5 | | 6 |)) .f x y x y x y x y+ + − + − + − + −   

       According to Theorem 3.3, we need to examine the weighted medians of the points  

          
1 2 3= (0,0) = (2,2) = (5,6)T T T   

respecting the weights  

          1 2 3

4 2 7
= , = , = .

13 13 13
w w w   

Using equation (3), we find the weighted median  

          
3 = (5,6)T   

as the unique minimum point, and so the strict global minimum value  

          
1/3(5,6) = 58 .f   

   

Example 4.3.  10Find a global maximum value of the function  

           
4( , ) = (5(| 2 | | |) 2(| 3 | | 1|) 3(| 4 | | 2 |)) .f x y x y x y x y −+ + + − + − + − + −  

       According to Theorem 3.3, we need to examine the weighted medians of the points  

          
1 2 3= ( 2,0) = (3,1) = (4,2)T T T−   

respecting the weights  

          1 2 3

5 2 3
= , = , = .

10 10 10
w w w   

Using equation (4), we find that the points  

          1 2= ( 2,0) and = (3,1)T T−   

are a lower and upper weighted median. Relying on Theorem 3.3 and Remark 3.4, we can take any point 
*

1 2, = [ 2,3] [0,1]T T T −   to get the global maximum value  

          
* 4( ) = ( 2,0) = 36 .f T f −−   
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