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Abstract: The Heston model assumes that the underlying stock price follows a Black-Scholes model, but with 

stochastic variance that follows CIR model. This model has no general explicit solution. In this paper, by using 

Feynman-Kac formula and Adomian decomposition method, the moments of solution for the Heston model is 

computed numerically. The moments have many applications in statistics. For instance, the first moment is the mean, 

the second moment is the variance, the third moment is the skewness, the fourth moment is the kurtosis, and so forth. 

Finally, to show the simplicity and efficiency of the proposed method, numerical example is presented. 

Keywords: Heston model, Stochastic differential equation, the Moments, Feynman-kac formula, Adomian 

decomposition method, Parabolic partial differential equation, Convergent series. 

 

1. INTRODUCTION 

 

A Stochastic differential equation (SDE) is a differential equation in which one or more of the terms has random 

components. In general, SDE has the following form 

𝑑𝑋(𝑡) = µ(𝑋(𝑡), 𝑡)𝑑𝑡 + 𝜎(𝑋(𝑡), 𝑡)𝑑𝑊(𝑡),                    (1) 

where µ(𝑋(𝑡), 𝑡) is drift term, and 𝜎(𝑋(𝑡), 𝑡) is diffusion term. SDEs are used in biology (for e.g. in the epidemic 

models, predator-prey models, and population models), physics (for e.g. in the ion transport, nuclear reactor kinetics, 

chemical reaction, and cotton fiber breakage), and stochastic control to model various phenomena. Also, in finance, 

SDEs are used to model stock and asset prices, and interest rates. The return of the asset price at time t has two 

deterministic and random parts. In other words 

dS(t)

S(t)
= 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑝𝑎𝑟𝑡 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡                   (2) 

Assuming that the deposit interest rate is 𝑟 > 0, therefore the deterministic part in the relation (2), is 𝑟𝑑𝑡. The 

random part represents the response to external effects, such as unexpected news. There are many external effects so 

by the well-known central limit theorem, the random part can be represented by a normal distribution with mean zero 

and variance 𝑣(𝑡)2𝑑𝑡. Therefore, the right-hand side of relation (2) can be expressed as 

dS(t)

S(t)
= 𝑟𝑑𝑡 + 𝑁(0, 𝑣(𝑡)2𝑑𝑡) = 𝑟𝑑𝑡 + 𝑣(𝑡)𝑁(0, 𝑑𝑡).                   (3) 

N(0, dt) can be replaced by 𝑑𝑊(𝑡) (𝑑𝑊(𝑡) is defined in section 2), so the equation (3) changes to 

dS(t)

S(t)
= 𝑟𝑑𝑡 + 𝑣(𝑡)𝑑𝑊(𝑡).                                                   (4) 

In finance, 𝑣(𝑡) is known as the volatility. If the volatility 𝑣(𝑡) is independent of the underlying asset price, say 
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𝑣(𝑡) = 𝑐𝑜𝑛𝑠𝑡., the asset price follow the well-known Black-Scholes stochastic differential equation 

dS(t)

S(t)
= 𝑟𝑑𝑡 + 𝜎𝑑𝑊(𝑡).                                                                   (5) 

The solution of this stochastic differential equation is the classical geometric Brownian motion and it is given by 

𝑆(𝑡) = 𝑆(0)𝑒𝑥𝑝 ((𝑟 −
1

2
𝜎2) 𝑡 + 𝜎𝑊(𝑡)).                                                  (6) 

There are various types of volatility functions used in financial modeling. In Theta process 𝑣(𝑡) = 𝜎𝑆𝜃−1(𝑡), hence 

dS(t)

S(t)
= 𝑟𝑑𝑡 + 𝜎𝑆𝜃−1(𝑡)𝑑𝑊(𝑡).                                                   (7) 

Heston model assumes that the underlying asset price, S(𝑡), follows a Black-Scholes stochastic differential equation, 

but the stochastic variance,𝑣(𝑡), that follows the CIR model [6]. Let {𝑊(𝑡)𝑠|𝑡 ≥ 0} and {𝑊(𝑡)𝜎|𝑡 ≥ 0} be two 

standard Wiener process with correlation parameter 𝜌 ∈ (−1,1). The Heston model is represented by the bivariate 

system of stochastic differential equations 

{

𝑆(𝑡) = µ𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝑊𝑠(𝑡),

𝑑𝜎2(𝑡) = 𝜅(𝜃 − 𝜎2(𝑡))𝑑𝑡 + 𝛼𝜎(𝑡)𝑑𝑊𝜎(𝑡),

𝑑𝑊𝑠(𝑡)𝑑𝑊𝜎(𝑡) = 𝜌𝑑𝑡,

                                                 (8) 

where µ, 𝜅, 𝜃, and 𝛼 are constants, and 𝜎(𝑡) is the stochastic volatility of 𝑆(𝑡). In the second equation (8), 𝜃 is average 

price volatility and as 𝑡 tends to infinity, the expected value of 𝜎2(𝑡) tends to 𝜃. 𝜅 is rate at which 𝜎2(𝑡) reverts to 𝜃. 

In addition, 𝛼 is volatility of volatility and determines the variance of 𝜎2(𝑡). 

Feynman-Kac formula named after Richard Feynman and Mark Kac, expresses a close connection between the 

expectations for solutions of SDEs and partial differential equations (PDEs) [2-5]. Let {𝑋(𝑡)}𝑡≥0 be a solution of the 

following SDE 

𝑑𝑋(𝑡) = 𝑎(𝑋(𝑡), 𝑡)𝑑𝑡 + 𝜎(𝑋(𝑡), 𝑡)𝑑𝑊(𝑡),                    (9) 

Assume that 𝑓 and 𝜌 be given functions. Fix a final time 𝑇 > 0 and define a new function 𝑉(𝑥, 𝑡) for 𝑡 ∈ [0, 𝑇] by 

𝑉(𝑥, 𝑡) = 𝑒−∫ 𝜌(𝑢)𝑑𝑢
𝑇
𝑡 𝐸[𝑓(𝑋(𝑇)|𝑋(𝑡) = 𝑥].                                  (10) 

Assume that 𝑉(𝑥, 𝑡) < ∞ for all (𝑥, 𝑡). Then 𝑉(𝑥, 𝑡) solves the following boundary value problem [2-5] 

{
𝑑𝑉(𝑥,𝑡)

𝑑𝑡
+

𝜎2(𝑥,𝑡)

2

𝑑2𝑉(𝑥,𝑡)

𝑑𝑥2
+ 𝑎(𝑥, 𝑡)

𝑑𝑉(𝑥,𝑡)

𝑑𝑥
= 𝜌(𝑡)𝑉(𝑥, 𝑡),

𝑉(𝑥, 𝑇) = 𝑓(𝑥).
                                                               (11) 

Feynman-Kac formula can be extended for multi-dimensional diffusion processes. Let {𝑊𝑖(𝑡)}𝑡≥0, 𝑖 = 1,2, … , 𝑛 be a 

sequence of standard Wiener processes. Let 𝑋(𝑖)(𝑡) , for 𝑖 = 1,2, … , 𝑛 be the solution of the following SDE 

𝑑𝑋(𝑖)(𝑡) = µ(𝑖)(𝑋(𝑖)(𝑡), 𝑡)𝑑𝑡 + ∑ 𝜎(𝑖,𝑗)(𝑋(𝑖), 𝑡)𝑑𝑊(𝑗)(𝑡)𝑛
𝑗=1 , 𝑖 = 1,2, … ,𝑚,                                           (12) 

where for 𝑖, 𝑗 = 1,2, …𝑛 

𝑑𝑊(𝑖)(𝑡)𝑑𝑊(𝑗)(𝑡) = {
𝜌𝑖,𝑗𝑑𝑡,   𝑖 ≠ 𝑗,   𝜌 ∈ (−1,1),

𝑑𝑡,         𝑖 = 𝑗.
                                                                                          (13) 

 Similarly, let 𝜌 and 𝑓 be given function. By denoting 𝑋(𝑡) = [𝑋(1)(𝑡), … , 𝑋(𝑚)(𝑡)], for 𝑡 ∈ [0, 𝑇] where 𝑇 > 0 and 

if 

𝑉(𝑋(𝑡), 𝑡) = 𝑒−∫ 𝜌(𝑢)𝑑𝑢
𝑇
𝑡 𝐸[𝑓(𝑋(𝑇))|𝑋(𝑡) = 𝑋],                                                                                          (14) 

then 𝑉(𝑋(𝑡), 𝑡) solves the following PDE 
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𝑑𝑉(𝑋(𝑡), 𝑡)

𝑑𝑥
+
1

2
∑∑(∑∑𝜎(𝑖,𝑘)(𝑋(𝑖)(𝑡), 𝑡)𝜎(𝑗,𝑙)(𝑋(𝑗)(𝑡), 𝑡)

𝑛

𝑙=1

𝑛

𝑘=1

)

𝑚

𝑗=1

𝑚

𝑖=1

𝑑2𝑉(𝑋(𝑡), 𝑡)

𝑑𝑋(𝑖)(𝑡)𝑑𝑋(𝑗)(𝑡)
 

∑ µ(𝑖)(𝑋(𝑖)(𝑡), 𝑡)
𝑑𝑉(𝑋(𝑡),𝑡)

𝑑𝑋(𝑖)(𝑡)
− 𝜌(𝑡)𝑉(𝑋(𝑡), 𝑡) = 0,𝑚

𝑖=1                                                                                     (15) 

subject to boundary condition 𝑉(𝑋(𝑇), 𝑇) = 𝑓(𝑋(𝑇)). 

Consequently, by solving the boundary value problems (11) or (15), the expectations for solutions of SDEs can 

be computed. Recently, Adomian decomposition method (ADM) has been applied with a great success to obtain 

approximate solutions for a large variety of linear and nonlinear problems in ODEs, PDEs, and integral equations. In 

addition, some modifications of the ADM have been suggested [1,7-14]. The ADM approximates the solution as an 

infinite series and usually converges to the exact solution. In addition, the convergency of the method is considered 

[15].  

The organization of this paper is as follows. In Section 2, for convenience of the reader, some basic definitions, 

and mathematical preliminaries of the stochastic calculus are presented. In Section 3, by using Feynman-Kac theorem, 

the PDE corresponding to Heston model is achieved. Afterwards, to solve this PDE, the ADM is applied. Finally, in 

Section 4, numerical example is presented. 

2. BASIC CONCEPTS OF THE STOCHASTIC CALCULUS 

In this section, some preliminary are reviewed in stochastic calculus [2-5]. In addition, the stochastic CIR model 

is solved in this section. 

Definition 2.1. Brownian motion is a stochastic process {𝑊(𝑡)|𝑡 ≥ 0} with the following properties: 

1. 𝑊(0) = 0. 

2. It has a continuous path. 

3. For all non-overlapping time intervals [𝑡1, 𝑡2], and [𝑡3, 𝑡4] the random variables 𝑊(𝑡2) −𝑊(𝑡1) and 𝑊(𝑡4) −
𝑊(𝑡3) are independent. 

4. For all 𝑠 and 𝑡, 𝑡 > 𝑠, the increment 𝑊(𝑡) −𝑊(𝑠) is a normal variable, with zero mean and variance 𝑡 − 𝑠 i.e., 

𝑊(𝑡) −𝑊(𝑠)~𝑁(0, 𝑡 − 𝑠). 

Definition 2.2. A process 𝑋(𝑡) is called 𝐹𝑡-adapted, if for all 𝑡, 𝑋(𝑡) is 𝐹𝑡-measurable. 

Definition 2.3. An Ito process has the form 

𝑋(𝑡) = 𝑋(0) + ∫ 𝑓(𝑠)𝑑𝑠 + ∫ 𝑔(𝑠)𝑑𝑊(𝑠), 0 ≤ 𝑡 ≤ 𝑇,
𝑡

0

𝑡

0
                                 (16) 

where 𝑓(𝑡) and 𝑔(𝑡) are 𝐹𝑡 -adapted, such that ∫ |𝑓(𝑡)|𝑑𝑡
𝑇

0
< ∞ and ∫ |𝑔(𝑡)|2𝑑𝑡

𝑇

0
< ∞. It is said that the process 

𝑋(𝑡) has the stochastic differential on [0, 𝑇], and  

𝑑𝑋(𝑡) = 𝑓(𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑𝑊(𝑡), 0 ≤ 𝑡 ≤ 𝑇.                                                                  (17) 

Let 𝑋(𝑡) and 𝑌(𝑡) are Ito processes. Then the following properties are satisfied. 

1. ∀𝛼, 𝛽 ∈ 𝑅, 

∫ (𝛼𝑋(𝑡) + 𝛽𝑌(𝑡))𝑑𝑡 =
𝑇

0
𝛼 ∫ 𝑋(𝑡)𝑑𝑊(𝑡) + 𝛽 ∫ 𝑌(𝑡)𝑑𝑊(𝑡)

𝑇

0

𝑇

0
.                                                         (18) 

2. Let 0≤ 𝑎 ≤ 𝑏 ≤ 𝑇, then 

∫ 𝑋(𝑡)𝐼(𝑎,𝑏]𝑑𝑡 =
𝑇

0
∫ 𝑋(𝑡)𝑑𝑡
𝑏

𝑎
.                                                                                                                  (19) 
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3. Zero mean property 

𝐸 [∫ 𝑋(𝑡)𝑑𝑊(𝑡)
𝑇

0
] = 0.                                                                                                                  (20) 

In other words, the expectation of an Ito integral is zero. Furthermore, if ∫ 𝐸[𝑋2(𝑡)]𝑑𝑡 < ∞
𝑇

0
, we have 

4. Isometry property 

𝐸 [(∫ 𝑋(𝑡)𝑑𝑊(𝑡)
𝑇

0
)
2

] = ∫ 𝐸[𝑋2(𝑡)]𝑑𝑡
𝑇

0
.                                                                                               (21) 

In the following, the second equation in (8) or the volatility model is solved. 

Theorem 2.1. Let 

{
𝑑𝜎2(𝑡) = 𝜅(𝜃 − 𝜎2(𝑡))𝑑𝑡 + 𝛼𝜎(𝑡)𝑑𝑊𝜎(𝑡),

𝜎(0) = 𝜎0.
                                                                                               (22) 

Then the exact solution is given by 

𝜎2(𝑡) = 𝑒−𝜅𝑡𝜎0 + 𝜃(1 − 𝑒
−𝜅𝑡) + 𝛼𝑒−𝜅𝑡 ∫ 𝑒𝜅𝑠𝜎(𝑠)𝑑𝑊𝜎(𝑠).

𝑡

0
                                                                   (23) 

Proof. The equation (22) changes to the following form 

𝑑𝜎2(𝑡) + 𝜅𝜎2(𝑡)𝑑𝑡 = 𝜅𝜃𝑑𝑡 + 𝛼𝜎(𝑡)𝑑𝑊𝜎(𝑡).                                                                                               (24) 

Multiplying both sides of the relation (24) by 𝑒𝜅𝑡 results in 

𝑑(𝑒𝜅𝑡𝜎2(𝑡)) = 𝜅𝜃𝑒𝜅𝑡𝑑𝑡 + 𝛼𝑒𝜅𝑡𝜎(𝑡)𝑑𝑊𝜎(𝑡).                                                                                              (25) 

Now, integrating both sides of the relation (25) on [0, 𝑡], results in (23). 

According to the above Theorem, the volatility in the Heston model has no general explicit solution. However, 

its mean and variance can be calculated explicitly. In the following, the mean and the variance of 𝜎2(𝑡) in the Heston 

model are computed. 

Theorem 2.2. The expectation and variance of 𝜎2(𝑡) are given by 

{
𝐸[𝜎2(𝑡)] = 𝑒−𝜅𝑡𝜎0 + 𝜃(1 − 𝑒

−𝜅𝑡),

𝑉𝑎𝑟[𝜎2(𝑡)] =
𝛼2

𝜅
𝜎0(𝑒

−𝜅𝑡 − 𝑒−2𝜅𝑡) +
𝜃𝛼2

2𝜅
(1 − 𝑒−𝜅𝑡)2.

                                                                                (26) 

Proof. Taking the expectation from both sides of the relation (23) result in 

𝐸[𝜎2(𝑡)] = 𝑒−𝜅𝑡𝜎0 + 𝜃(1 − 𝑒
−𝜅𝑡) + 𝐸[𝛼𝑒−𝜅𝑡∫ 𝑒𝜅𝑠𝜎(𝑠)𝑑𝑊𝜎(𝑠)]

𝑡

0

 

=𝑒−𝜅𝑡𝜎0 + 𝜃(1 − 𝑒
−𝜅𝑡)+    𝛼𝑒−𝜅𝑡 ∫ 𝑒𝜅𝑠𝜎(𝑠)𝐸[𝑑𝑊𝜎(𝑠)]

𝑡

0
 

= 𝑒−𝜅𝑡𝜎0 + 𝜃(1 − 𝑒
−𝜅𝑡).                                                                                                                       (27) 

It is interesting to note that lim
𝑡→∞

𝐸[𝜎2(𝑡)] = 𝜃. Finally, the variance can be calculated as 

𝑉𝑎𝑟[𝜎2(𝑡)] = 𝐸[𝜎4(𝑡)] − (𝐸[𝜎2(𝑡)])2 

=𝐸 [(𝑒−𝜅𝑡𝜎0 + 𝜃(1 − 𝑒
−𝜅𝑡) + 𝛼𝑒−𝜅𝑡 ∫ 𝑒𝜅𝑠𝜎(𝑠)𝑑𝑊𝜎(𝑠)

𝑡

0
)
2

] − [ 𝑒−𝜅𝑡𝜎0 + 𝜃(1 − 𝑒
−𝜅𝑡)]2 

=
𝛼2

𝜅
𝜎0(𝑒

−𝜅𝑡 − 𝑒−2𝜅𝑡) +
𝜃𝛼2

2𝜅
(1 − 𝑒−𝜅𝑡)2                                                                                         (28) 
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The above relation is simplified by using (20) and (21). In the next section, the ADM is described. Furthermore, this 

method is applied to solve the PDE achieved by Feynman-Kac formula for Heston model.  

 

3. THE ADOMIAN DECOMPOSITION METHOD (ADM)  
 

Consider the following differential equation 

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔,                                                                                                                                           (29) 

where 𝐿 is the highest order derivative which assumed to be easily invertible, 𝑅 is a linear differential operator of less 

order than 𝐿, 𝑁 represents the nonlinear terms, and 𝑔 is source term. Applying 𝐿−1 to both side of the relation (29) 

and using initial conditions results in 

𝑢 = 𝑓 − 𝐿−1(𝑅𝑢) − 𝐿−1(𝑁𝑢),                                                                                                                          (30) 

where the function 𝑓 represents terms arising from integrating the source term 𝑔 and from using the given conditions. 

Let 𝑢 = ∑ 𝑢𝑖
∞
𝑖=1 . In this method, the components 𝑢0, 𝑢1, 𝑢2, … are determined recursively as follows [1,7-14] 

 

{
𝑢0 = 𝑓,

𝑢𝑘 = −𝐿
−1(𝑅𝑢𝑘−1) − 𝐿

−1(𝑁𝑢𝑘−1), 𝑘 ∈ 𝑁.
                                                                                                 (31) 

The series have been obtained is convergent when the ration of ||𝑢𝑖||∞ to ||𝑢𝑖−1||∞ for 𝑖 = 1,2,3, … decrease to zero 

[15]. 

 

In the following, by using the Feynman-Kac formula, the ADM is applied to obtain an explicit formula for the 

moments of the Heston model. By using Feynman-Kac formula, to compute the n-moment of the 𝑆(𝑡) or 𝜎2(𝑡) in 

Heston model, the following PDE with boundary condition 𝑉(𝑥, 𝑦, 0) = 𝑥𝑛 or 𝑉(𝑥, 𝑦, 0) = 𝑦𝑛  is achieved 

−
𝑑𝑉

𝑑𝑡
+ µ𝑥

𝑑𝑉

𝑑𝑥
+ 𝜅(𝜃 − 𝑦)

𝑑𝑉

𝑑𝑦
+

1

2
𝑥2𝑦

𝑑2𝑉

𝑑𝑥2
+

1

2
𝛼2𝑦

𝑑2𝑉

𝑑𝑦2
+ 𝜌𝛼𝑥𝑦

𝑑2𝑉

𝑑𝑦𝑑𝑥
= 0.                                                         (32) 

Integrating both sides of the relation (32) results in 

−∫
𝑑𝑉

𝑑𝑠𝑡

𝑑𝑠 + ∫ µ𝑥
𝑑𝑉

𝑑𝑥
𝑑𝑠

𝑡

+∫ 𝜅(𝜃 − 𝑦)
𝑑𝑉

𝑑𝑦
𝑑𝑠

𝑡

+ 

∫
1

2
𝑥2𝑦

𝑑2𝑉

𝑑𝑥2
𝑑𝑠

𝑡
+ ∫

1

2
𝛼2𝑦

𝑑2𝑉

𝑑𝑦2
𝑑𝑠

𝑡
+ ∫ 𝜌𝛼𝑥𝑦

𝑑2𝑉

𝑑𝑦𝑑𝑥
𝑑𝑠

𝑡
= 0.                                                                           (33) 

Therefore, by using initial condition 𝑉(𝑥, 𝑦, 0) = 𝑥𝑛, the relation (33) is simplified as 

𝑉 = 𝑥𝑛 +∫ µ𝑥
𝑑𝑉

𝑑𝑥
𝑑𝑠

𝑡

+∫ 𝜅(𝜃 − 𝑦)
𝑑𝑉

𝑑𝑦
𝑑𝑠

𝑡

+∫
1

2
𝑥2𝑦

𝑑2𝑉

𝑑𝑥2
𝑑𝑠

𝑡

 

+∫
1

2
𝛼2𝑦

𝑑2𝑉

𝑑𝑦2
𝑑𝑠

𝑡
+ ∫ 𝜌𝛼𝑥𝑦

𝑑2𝑉

𝑑𝑦𝑑𝑥
𝑑𝑠

𝑡
= 0.                                                                                                     (34) 

Let 𝑉 = ∑ 𝑉𝑛
∞
𝑛=0  and 𝐿 =

𝑑

𝑑𝑡
. According to the relation (31), the components 𝑉0, 𝑉1, 𝑉2, … are determined as follows 

 

{
 
 

 
 

𝑉0=𝑥𝑛,

𝑉𝑘 = ∫ µ𝑥
𝑑𝑉𝑘−1

𝑑𝑥
𝑑𝑠 + ∫ 𝜅(𝜃 − 𝑦)

𝑑𝑉𝑘−1

𝑑𝑦
𝑑𝑠 + ∫

1

2
𝑥2𝑦

𝑑2𝑉𝑘−1

𝑑𝑥2
𝑑𝑠

𝑡𝑡𝑡

+∫
1

2
𝛼2𝑦

𝑑2𝑉𝑘−1

𝑑𝑦2
+ ∫ 𝜌𝛼𝑥𝑦

𝑑2𝑉𝑘−1

𝑑𝑦𝑑𝑥𝑡𝑡
, 𝑘 ∈ 𝑁.

                                                         (35) 

Similarly, by using initial condition 𝑉(𝑥, 𝑦, 0) = 𝑦𝑛, the moments of 𝜎2(𝑇) can be calculated as well. 

4. Numerical example 
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In order to illustrate the method, the following example is considered. A program code in the Maple for µ = 0.03, 

𝜅 = 9.9, 𝜃 = 0.04, 𝛼 = 0.14, and 𝜌 = −0.9 can be done by the following procedure: 

 

restart; 

N:=5: 

mu:=0.03: 

kappa:=9.9: 

theta:=0.04: 

alpha:=0.14: 

rho:=-0.9: 

v[0]:=x**2: 

for i from 1 to N do 

v[i]:=simplify(int(mu*x*diff(v[i-1],x),s)+int(kappa*(theta-y)*diff(v[i-1],y),s)+int((1/2)*x**2*y*diff(v[i-

1],x,x),s)+int((1/2)*(alpha**2)*y*diff(v[i-1],y,y),s)+int(rho*alpha*x*y*diff(v[i-1],x,y),s)); 

od; 

approximate:=add(v[i](x),i=0..N); 

 

Thus, the first few components, are obtained as follows 

𝑉0 = 𝑥2, 
𝑉1 = 0.06𝑥

2𝑠 + 𝑦𝑥2𝑠, 
𝑉2 = 0.1998𝑥2𝑠2 − 5.016𝑦𝑥2𝑠2 + 0.5𝑦2𝑥2𝑠2, 
𝑉3 = −0.658116𝑥2𝑠3 + 17.07569067𝑦𝑥2𝑠3 − 5.046𝑦2𝑥2𝑠3 + 0.1666666666𝑦3𝑥2𝑠3, 
𝑉4 = 1.680621636𝑥

2𝑠4 − 44.27032996𝑦𝑥2𝑠4 + 29.85867867𝑦2𝑥2𝑠4 − 2.528𝑦3𝑥2𝑠4 

+0.04166666665𝑦4𝑥2𝑠4, 
𝑉5 = −3.486042673𝑥2𝑠5 + 94.53801904𝑦𝑥2𝑠5 − 130.3762663𝑦2𝑥2𝑠5 + 21.35413334𝑦3𝑥2𝑠5 

−0.8434999999𝑦4𝑥2𝑠5 + 0.00833333333𝑦5𝑥2𝑠5, 
𝑉6 = 6.204648831𝑥2𝑠6 − 177.2295181𝑦𝑥2𝑠6 + 460.0832479𝑦2𝑥2𝑠6 − 130.1486338𝑦3𝑥2𝑠6 

+9.262417446𝑦4𝑥2𝑠6 − 0.211𝑦5𝑥2𝑠6 + 0.001388888888𝑦6𝑥2𝑠6, 
. 

. 

. 

Finally, the series have been obtained is convergent because the ratio of ||𝑉𝑖||∞  to ||𝑉𝑖−1||∞  for 𝑖 = 1,2,3, … 

slowly decrease to zero [15]. Below, these ratios for the first few are expressed 
||𝑉1||∞
||𝑉0||∞

= 1, 

||𝑉2||∞
||𝑉1||∞

= 5.016, 

||𝑉3||∞
||𝑉2||∞

= 3.404244551, 

||𝑉4||∞
||𝑉3||∞

= 2.592593812, 

||𝑉5||∞
||𝑉4||∞

= 2.945003266, 

||𝑉6||∞
||𝑉5||∞

= 3.528888048, 

||𝑉7||∞
||𝑉6||∞

= 2.997415342, 

. 

. 

. 

5. Conclusions 

 

By using the Feynman-Kac formula a PDE for computing the moments of a solution for SDE is obtained. In this paper, 

the PDE related to Heston model is obtained. Afterwards, the ADM is applied to solve this PDE. Numerical example 

shows the simplicity and efficiency of the proposed method. 
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