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Abstract: In this study, joint distributions of order statistics of nonidentically distributed discrete random vectors are 

expressed in form of integral by permanent. Then, results related to pf and df of order statistics of the discrete random 

vectors are given. 
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1. INTRODUCTION  

 

Several identities and recurrence relations for probability density function(pdf) and distribution function(df) 

of order statistics of independent and identically distributed(iid) random variables were established by numerous 

authors including Arnold et al.[1], Balasubramanian and Beg[2], David[3], and Reiss[4]. Furthermore, Arnold et al.[1], 

David[3], Gan and Bain[5], and Khatri[6] obtained the probability function(pf) and df of order statistics of iid random 

variables from a discrete parent. Balakrishnan[7] showed that several relations and identities that have been derived 

for order statistics from continuous distributions also hold for the discrete case. Nagaraja[8] explored the behavior of 

higher order conditional probabilities of order statistics in a attempt to understand the structure of discrete order 

statistics. Nagaraja[9] considered some results on order statistics of a random sample taken from a discrete population. 

Corley[10] defined a multivariate generalization of classical order statistics for random samples from a continuous 

multivariate distribution. Expressions for generalized joint densities of order statistics of iid random variables in terms 

of Radon-Nikodym derivatives with respect to product measures based on df were derived by Goldie and Maller[11]. 

Guilbaud[12] expressed the probability of the functions of independent but not necessarily identically 

distributed(innid) random vectors as a linear combination of probabilities of the functions of iid random vectors and 

thus also for order statistics of random variables. 

Recurrence relationships among the distribution functions of order statistics arising from innid random 

variables were obtained by Cao and West[13]. In addition, Vaughan and Venables[14] derived the joint pdf and 

marginal pdf of order statistics of innid random variables by means of permanents. Balakrishnan[15], and Bapat and 

Beg[16] obtained the joint pdf and df of order statistics of innid random variables by means of permanents. Using 

multinomial arguments, the pdf of 𝑋𝑟:𝑛+1  (1 ≤ 𝑟 ≤ 𝑛) was obtained by Childs and Balakrishnan[17] by adding 

another independent random variable to the original n variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 . Also, Balasubramanian et al.[18] 

established the identities satisfied by distributions of order statistics from non-independent non-identical variables 

through operator methods based on the difference and differential operators. In a paper published in 1991, Beg[19] 

obtained several recurrence relations and identities for product moments of order statistics of innid random variables 

using permanents. Recently, Cramer et al.[20] derived the expressions for the distribution and density functions by 

Ryser’s method and the distributions of maxima and minima based on permanents. In the first of two papers, 

Balasubramanian et al.[21] obtained the distribution of single order statistic in terms of distribution functions of the 

minimum and maximum order statistics of some subsets of {𝑋1, 𝑋2, . . . , 𝑋𝑛} where 𝑋𝑖’s are innid random variables. 

Later, Balasubramanian et al.[22] generalized their previous results[21] to the case of the joint distribution function 

of several order statistics. 

In this study, joint distributions of p order statistics of innid discrete random vectors are expressed in form of 

an integral. As far as we know, these approaches have not been considered in the framework of order statistics from 

innid discrete random vectors. 
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From now on, subscripts and superscripts are defined in first place in which they are used and these 

definitions will be valid unless they are redefined. 

If   a1,  a2, ... are defined as column vectors, then matrix obtained by taking 𝑚1 copies of  a1, 𝑚2 copies of 

 a2, ... can be denoted [a1
𝑚1

  a2
𝑚2

  ...] and 𝑝𝑒𝑟A denotes permanent of a square matrix A, which is defined as similar to 

determinant except that all terms in expansion have a positive sign. 

Consider x = (𝑥(1), 𝑥(2), . . . , 𝑥(𝑏)) and y = (𝑦(1), 𝑦(2), . . . , 𝑦(𝑏)) (𝑏 = 1,2, . . . , 𝑛) are vector, then it can be 

written as x ≤ y if 𝑥(𝑠) ≤ 𝑦(𝑠) (𝑠 = 1,2, . . . , 𝑏) and x ∓ y = (𝑥(1) ∓ 𝑦(1), 𝑥(2) ∓ 𝑦(2), . . . , 𝑥(𝑏) ∓ 𝑦(𝑏)). 

Let 𝜉𝑖 = (𝜉𝑖
(1), 𝜉𝑖

(2), . . . , 𝜉𝑖
(𝑏)) (𝑖 = 1,2, . . . , 𝑛) be 𝑛 innid discrete random vectors which components of 𝜉𝑖 are 

independent. 

 𝑋𝑟:𝑛
(𝑠) = 𝑍𝑟:𝑛(𝜉1

(𝑠), 𝜉2
(𝑠), . . . , 𝜉𝑛

(𝑠)) (1) 

 

is stated as 𝑟th order statistic of 𝑠th components of 𝜉1, 𝜉2, . . . , 𝜉𝑛 . From (1), ordered values of 𝑠th components of 

𝜉1, 𝜉2, . . . , 𝜉𝑛 are expressed as 

 𝑋1:𝑛
(𝑠) ≤ 𝑋2:𝑛

(𝑠) ≤. . . ≤ 𝑋𝑛:𝑛
(𝑠) . (2) 

From (2), we can write 

 X𝑟:𝑛 = (𝑋𝑟:𝑛
(1), 𝑋𝑟:𝑛

(2), . . . , 𝑋𝑟:𝑛
(𝑏))    (1 ≤ 𝑟 ≤ 𝑛). 

Also,  x𝑤 = (𝑥𝑤
(1), 𝑥𝑤

(2), . . . , 𝑥𝑤
(𝑏)), (𝑥𝑤

(𝑠) = 0, 1, 2, … )(𝑤 = 1,2, . . . , 𝑝;  𝑝 = 1,2, . . . , 𝑛) and 𝑥0
(𝑠)
= 0. Let 𝑓𝑖  and 𝐹𝑖  be 

pf and df of 𝜉𝑖
(𝑠)

, respectively. 

In this study, pf and df of X𝑟1:𝑛 , X𝑟2:𝑛 , . . . , X𝑟𝑝:𝑛    (1 ≤ 𝑟1 < 𝑟2 <. . . < 𝑟𝑝 ≤ 𝑛)  are given. Let  X(𝑠) =

(𝑋𝑟1:𝑛
(𝑠) , 𝑋𝑟2:𝑛

(𝑠) , . . . , 𝑋𝑟𝑝:𝑛
(𝑠) ) and  x(𝑠) = (𝑥1

(𝑠), 𝑥2
(𝑠), . . . , 𝑥𝑝

(𝑠)). For notational convenience we write ∑
𝑧1
(𝑠)
,𝑧2
(𝑠)
,...,𝑧𝑝

(𝑠)
,  

 

∑
𝑚𝑝,𝑘𝑝,...,𝑚1,𝑘1

, ∫  and ∫
V

 instead of  ∑
𝑥1
(𝑠)

𝑧1
(𝑠)
=0

  ∑
𝑥2
(𝑠)

𝑧2
(𝑠)
=𝑧1

(𝑠)
  ∑

𝑥3
(𝑠)

𝑧3
(𝑠)
=𝑧2

(𝑠)
. . . ∑

𝑥𝑝
(𝑠)

𝑧𝑝
(𝑠)
=𝑧𝑝−1

(𝑠)
,  

 

∑
𝑛−𝑟𝑝

𝑚𝑝=0
  ∑
𝑟𝑝−𝑟𝑝−1−1

𝑘𝑝=0
. . . ∑

𝑟3−𝑟2−1

𝑚2=0
  ∑
𝑟2−𝑟1−1

𝑘2=0
  ∑
𝑟2−𝑟1−1

𝑚1=0
  ∑
𝑟1−1

𝑘1=0
, ∫
𝐹
𝜍2
(1)(𝑥1

(𝑠)
−)

𝐹
𝜍2
(1)(𝑥1

(𝑠)
)

  ∫
𝐹
𝜍4
(1)(𝑥2

(𝑠)
−)

𝐹
𝜍4
(1)(𝑥2

(𝑠)
)

. . . ∫
𝐹
𝜍2𝑝
(1)(𝑥𝑝

(𝑠)
−)

𝐹
𝜍2𝑝
(1)(𝑥𝑝

(𝑠)
)

 and  

 

∫
0

𝐹
𝜍2
(1)(𝑥1

(𝑠)
)

  ∫
𝑣
𝜍2
(1)
(𝑠,1)

𝐹
𝜍4
(1)(𝑥2

(𝑠)
)

. . . ∫
𝑣
𝜍
2(𝑝−1)
(1)
(𝑠,𝑝−1)

𝐹
𝜍2𝑝
(1)(𝑥𝑝

(𝑠)
)

 in the expressions below, respectively. 

 

2. THEOREMS FOR PROBABILITY AND DISTRIBUTION FUNCTIONS 

 

In this section, theorems related to pf and df of X𝑟1:𝑛, X𝑟2:𝑛 , . . . , X𝑟𝑝:𝑛 are given. We now express the following 

theorem for joint pf of order statistics of innid discrete random vectors. 

 

Theorem 2.1. 

 

𝑓𝑟1,𝑟2,…,𝑟𝑝:𝑛(x1, x2, … , x𝑝) 

=∏D ∑ ∫ [∏𝑝𝑒𝑟[v(𝑠,𝑤) − v(𝑠,𝑤−1)

𝑟𝑤−𝑟𝑤−1−1

][𝜍2𝑤−1/⋅)

𝑝+1

𝑤=1

]

𝑛𝜍1 ,𝑛𝜍2 ,…,𝑛𝜍2𝑝

𝑏

𝑠=1

∏𝑝𝑒𝑟[dv(𝑠,𝑤)

1

][𝜍2𝑤/⋅)

𝑝

𝑤=1

,                              (3) 

 

x1 < x2 < ⋯ < x𝑝, where D = ∏ [(𝑟𝑤 − 𝑟𝑤−1 − 1)!]
−1𝑝+1

𝑤=1 , 𝑟0 = 0, 𝑟𝑝+1 = 𝑛 + 1, 

 

 𝑣
𝜍2𝑤−1
(𝑗)
(𝑠,𝑡)

= [𝑣
𝜍2𝑡
(1)
(𝑠,𝑡)

− 𝐹
𝜍2𝑡
(1)(𝑥𝑡

(𝑠)
−)]

𝑓
𝜍2𝑤−1
(𝑗) (𝑥𝑤

(𝑠)
)

𝑓
𝜍2𝑡
(1)(𝑥𝑡

(𝑠)
)
+ 𝐹

𝜍2𝑤−1
(𝑗) (𝑥𝑡

(𝑠)
−), v(𝑠,𝑤) = (𝑣1

(𝑠,𝑤), 𝑣2
(𝑠,𝑤), … , 𝑣𝑛

(𝑠,𝑤)
)′, dv(𝑠,𝑤) =

(𝑑𝑣1
(𝑠,𝑤), 𝑑𝑣2

(𝑠,𝑤), … , 𝑑𝑣𝑛
(𝑠,𝑤)

)′, v(𝑠,0) = 0 = (0,0, … ,0)′ and v(𝑠,𝑝+1) = 1 = (1,1, … ,1)′ are column vectors,  
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∑𝑛𝜍1 ,𝑛𝜍2 ,...,𝑛𝜍2𝑝  denotes sum over ⋃ 𝜍ℓ
2𝑝
ℓ=1  for which 𝜍𝜐 ∩ 𝜍 𝜗 = 𝜙 for 𝜐 ≠ 𝜗, ⋃ 𝜍ℓ

2𝑝+1
ℓ=1 = {1,2, . . . , 𝑛} and  

 

𝜍ℓ =

{
 
 

 
 {𝜍ℓ

(1)
},                                                      if ℓ even

{𝜍ℓ
(1)
, 𝜍ℓ
(2)
, . . . , 𝜍

ℓ

(𝑟ℓ+1
2

−𝑟ℓ−1
2

−1)

} , if ℓ odd.
 

 

Here, 𝑛𝜍ℓ is cardinality of 𝜍ℓ. A[𝜍ℓ/⋅) is matrix obtained from A by taking rows whose indices are in 𝜍ℓ. 

 

Proof.  It can be written 

𝑓𝑟1,𝑟2,...,𝑟𝑝:𝑛(x1, x2, . . . , x𝑝) = 𝑃 {X𝑟1:𝑛 = x1, X𝑟2:𝑛 = x2, . . . , X𝑟𝑝:𝑛 = x𝑝} 

                                              = 𝑃{X(1) = x(1), X(2) = x(2), . . . , X(𝑏) = x(𝑏)} 

                                              =∏𝑃{X(𝑠) = x(𝑠)}

𝑏

𝑠=1

 

                                              =∏𝑃 {𝑋𝑟1:𝑛
(𝑠) = 𝑥1

(𝑠), 𝑋𝑟2:𝑛
(𝑠) = 𝑥2

(𝑠), . . . , 𝑋𝑟𝑝:𝑛
(𝑠) = 𝑥𝑝

(𝑠)}

𝑏

𝑠=1

 

                                              =∏𝑓𝑟1,𝑟2,...,𝑟𝑝:𝑛(𝑥1
(𝑠)
, 𝑥2

(𝑠)
, . . . , 𝑥𝑝

(𝑠)
).

𝑏

𝑠=1

 

 

Consider 

 

 {𝑋𝑟1:𝑛
(𝑠) = 𝑥1

(𝑠), 𝑋𝑟2:𝑛
(𝑠) = 𝑥2

(𝑠), . . . , 𝑋𝑟𝑝:𝑛
(𝑠) = 𝑥𝑝

(𝑠)}. 

The above event can be realized mutually exclusive as follows: 𝑟1 − 1 − 𝑘1 observations are less than 𝑥1
(𝑠)

, 

𝑘𝑤 + 1 +𝑚𝑤  (𝑤 = 1,2, … , 𝑝)  observations are equal to 𝑥𝑤
(𝑠)

, 𝑟𝜉 − 1 − 𝑘𝜉 −𝑚𝜉−1 − 𝑟𝜉−1  (𝜉 = 2, 3, . . . , 𝑝) 

observations are in interval (𝑥𝜉−1
(𝑠) , 𝑥𝜉

(𝑠)) and 𝑛 −𝑚𝑝 − 𝑟𝑝 observations exceed 𝑥𝑝
(𝑠)

. Probability function of the above 

event can be written as 

 𝑓𝑟1,𝑟2,...,𝑟𝑝:𝑛(𝑥1
(𝑠)
, 𝑥2

(𝑠)
, . . . , 𝑥𝑝

(𝑠)
) = 𝑃 {𝑋𝑟1:𝑛

(𝑠) = 𝑥1
(𝑠), 𝑋𝑟2:𝑛

(𝑠) = 𝑥2
(𝑠), . . . , 𝑋𝑟𝑝:𝑛

(𝑠) = 𝑥𝑝
(𝑠)}. 

The following expression can be written from the last identity. 

 

𝑓𝑟1,𝑟2,…,𝑟𝑝:𝑛(x1, x2, … , x𝑝) 

=∏ ∑ C1𝑝𝑒𝑟[F(𝑥1
(𝑠)
−)

𝑟1−1−𝑘1

  f(𝑥1
(𝑠)
)

𝑘1+1+𝑚1
𝑚𝑝,𝑘𝑝,...,𝑚1,𝑘1

𝑏

𝑠=1

F(𝑥2
(𝑠)
−) − F(𝑥1

(𝑠)
)

𝑟2−1−𝑘2−𝑚1−𝑟1

  f(𝑥2
(𝑠)
)

𝑘2+1+𝑚2

⋅⋅⋅ f(𝑥𝑝
(𝑠)
)

𝑘𝑝+1+𝑚𝑝

  1 − F(𝑥𝑝
(𝑠)
)

𝑛−𝑚𝑝−𝑟𝑝

], 

 

where C1 = (∏ [(𝑟𝑤 − 1 − 𝑘𝑤 −𝑚𝑤−1 − 𝑟𝑤−1)!]
𝑝+1
𝑤=1

−1
) .∏ [(𝑘𝑤 + 1 + 𝑚𝑤)!]

−1𝑝
𝑤=1 , 𝑚0 = 0, 𝑘𝑝+1 = 0,  

 

𝑚𝑤−1 + 𝑘𝑤 ≤ 𝑟𝑤 − 𝑟𝑤−1 − 1, F(𝑥𝑤
(𝑠)
) = (𝐹1(𝑥𝑤

(𝑠)
), 𝐹2(𝑥𝑤

(𝑠)
), . . . , 𝐹𝑛(𝑥𝑤

(𝑠)
))
′
,  

 

f(𝑥𝑤
(𝑠)
) = (𝑓1(𝑥𝑤

(𝑠)
), 𝑓2(𝑥𝑤

(𝑠)
), . . . , 𝑓𝑛(𝑥𝑤

(𝑠)
))
′
 and 𝐹𝑖(𝑥𝑤

(𝑠)−) = 𝑃(𝑋𝑖
(𝑠) < 𝑥𝑤

(𝑠)) (𝑖 = 1,2, . . . , 𝑛). 

 

In the above identity, using properties of permanent, it can be written 

𝑓𝑟1,𝑟2,...,𝑟𝑝:𝑛(x1, x2, . . . , x𝑝) =∏ ∑ C1
𝑚𝑝,𝑘𝑝,...,𝑚1,𝑘1

𝑏

𝑠=1

∑

𝑛𝑠1 ,𝑛𝑠2 ,...,𝑛𝑠4𝑝

[∏𝑝𝑒𝑟[f(𝑥𝑤−1
(𝑠) )]

𝑚𝑤−1

[𝑠4(𝑤−1)/⋅)

𝑝+1

𝑤=1

 

⋅ 𝑝𝑒𝑟[F(𝑥𝑤
(𝑠)−) − F(𝑥𝑤−1

(𝑠) )]

𝑟𝑤−1−𝑘𝑤−𝑚𝑤−1−𝑟𝑤−1

[𝑠4𝑤−3/. )𝑝𝑒𝑟[f(𝑥𝑤
(𝑠))]

𝑘𝑤

[𝑠4𝑤−2/. )]∏𝑝𝑒𝑟[f(𝑥𝑤
(𝑠))]

1

[𝑠4𝑤−1/. ),

𝑝

𝑤=1

      (4) 

 

where ∑𝑛𝑠1 ,𝑛𝑠2 ,...,𝑛𝑠4𝑝  denotes sum over ⋃ 𝑠𝑙
4𝑝
𝑙=1  for which 𝑠𝜐 ∩ 𝑠𝜗 = 𝜙 for 𝜐 ≠ 𝜗, ⋃ 𝑠𝑙

4𝑝+1
𝑙=1 = {1,2, . . . , 𝑛},  
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F(𝑥0
(𝑠)) = 0 = (0,0, … ,0)′, F(𝑥𝑝+1

(𝑠) ) = 1 = (1,1, … ,1)′ and  

 

𝑠𝑙 =

{
 
 
 
 
 
 

 
 
 
 
 
 
{𝑠𝑙

(1)
, 𝑠𝑙
(2)
, . . . , 𝑠𝑙

(𝑚𝑙
4

)

},                                              if 𝑙 ≡ 0 (mod 4)

{𝑠𝑙
(1)
, 𝑠𝑙
(2)
, . . . , 𝑠𝑙

(𝑟𝑙+3
4

−1−𝑚𝑙−1
4

−𝑘𝑙+3
4

−𝑟𝑙−1
4

)

} , if 𝑙 ≡ 1 (mod 4)

{𝑠𝑙
(1)
, 𝑠𝑙
(2)
, . . . , 𝑠𝑙

(𝑘𝑙+2
4

)

},                                            if 𝑙 ≡ 2 (mod 4)

{𝑠𝑙
(1)
},                                                                                    if 𝑙 ≡ 3 (mod 4).

 

 

(4) can be written as 

𝑓𝑟1,𝑟2,...,𝑟𝑝:𝑛(x1, x2, . . . , x𝑝) =∏ ∑ C1
𝑚𝑝,𝑘𝑝,...,𝑚1,𝑘1

𝑏

𝑠=1

∑ [∏
(𝑘𝑤 + 1 + 𝑚𝑤)!

𝑘𝑤! 𝑚𝑤!

𝑝

𝑤=1

]

𝑛𝑠1 ,𝑛𝑠2 ,...,𝑛𝑠4𝑝

 

 

. [∫∫…

1

0

∫[∏[𝑦𝑤
(𝑠)]

𝑘𝑤

𝑝+1

𝑤=1

[1 − 𝑦𝑤−1
(𝑠) ]

𝑚𝑤−1
]

1

0

1

0

∏𝑑𝑦𝑤
(𝑠)

𝑝

𝑤=1

] [∏𝑝𝑒𝑟[f(𝑥𝑤−1
(𝑠) )]

𝑚𝑤−1

[𝑠4(𝑤−1)/⋅)

𝑝+1

𝑤=1

 

 

⋅ 𝑝𝑒𝑟[F(𝑥𝑤
(𝑠)−) − F(𝑥𝑤−1

(𝑠) )]

𝑟𝑤−1−𝑘𝑤−𝑚𝑤−1−𝑟𝑤−1

[𝑠4𝑤−3/⋅)𝑝𝑒𝑟[f(𝑥𝑤
(𝑠))]

𝑘𝑤

[𝑠4𝑤−2/⋅)] ∏𝑝𝑒𝑟[f(𝑥𝑤
(𝑠))]

1

[𝑠4𝑤−1/⋅)

𝑝

𝑤=1

. 

 

The above identity can be expressed as 

 

𝑓𝑟1,𝑟2,...,𝑟𝑝:𝑛(x1, x2, . . . , x𝑝) =∏ ∑ C

𝑚𝑝,𝑘𝑝,...,𝑚1,𝑘1

𝑏

𝑠=1

∑

𝑛𝑠1 ,𝑛𝑠2 ,...,𝑛𝑠4𝑝

 

 

∫∫…

1

0

∫[∏𝑝𝑒𝑟[(1 − 𝑦𝑤−1
(𝑠) )f(𝑥𝑤−1

(𝑠) )]

𝑚𝑤−1

𝑝+1

𝑤=1

[𝑠4(𝑤−1)/⋅)𝑝𝑒𝑟[F(𝑥𝑤
(𝑠)−) − F(𝑥𝑤−1

(𝑠) )]

𝑟𝑤−1−𝑘𝑤−𝑚𝑤−1−𝑟𝑤−1

[𝑠4𝑤−3/⋅)

1

0

1

0

 

 

⋅ 𝑝𝑒𝑟[𝑦𝑤
(𝑠)f(𝑥𝑤

(𝑠))]

𝑘𝑤

[𝑠4𝑤−2/⋅)]∏𝑝𝑒𝑟[𝑑𝑦𝑤
(𝑠)f(𝑥𝑤

(𝑠))]

1

[𝑠4𝑤−1/⋅)

𝑝

𝑤=1

,                                                                                              (5) 

 

where C = (∏ [(𝑟𝑤 − 1 − 𝑘𝑤 −𝑚𝑤−1 − 𝑟𝑤−1)!]
−1𝑝+1

𝑤=1 ).∏ [𝑚𝑤! 𝑘𝑤!]
−1𝑝

𝑤=1 . 

 

In (5), if v(𝑠,𝑤) = 𝑦𝑤
(𝑠)f(𝑥𝑤

(𝑠)) + F(𝑥𝑤
(𝑠)−), the following identity is obtained. 

 

𝑓𝑟1,𝑟2,...,𝑟𝑝:𝑛(x1, x2, . . . , x𝑝) =∏ ∑ C

𝑚𝑝,𝑘𝑝,...,𝑚1,𝑘1

𝑏

𝑠=1

∑

𝑛𝑠1 ,𝑛𝑠2 ,...,𝑛𝑠4𝑝

 

∫

𝐹
𝑠3
(1)(𝑥1

(𝑠)
−)

𝐹
𝑠3
(1)(𝑥1

(𝑠)
)

  ∫

𝐹
𝑠7
(1)(𝑥2

(𝑠)
−)

𝐹
𝑠7
(1)(𝑥2

(𝑠)
)

… ∫

𝐹
𝑠4𝑝−1
(1) (𝑥𝑝

(𝑠)
−)

𝐹
𝑠4𝑝−1
(1) (𝑥𝑝

(𝑠)
)

[∏𝑝𝑒𝑟[F(𝑥𝑤−1
(𝑠) ) − v(𝑠,𝑤−1)]

𝑚𝑤−1

𝑝+1

𝑤=1

[𝑠4(𝑤−1)/. ) 
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. 𝑝𝑒𝑟[F(𝑥𝑤
(𝑠)−) − F(𝑥𝑤−1

(𝑠) )]

𝑟𝑤−1−𝑘𝑤−𝑚𝑤−1−𝑟𝑤−1

[𝑠4𝑤−3/. )𝑝𝑒𝑟[v
(𝑠,𝑤) − F(𝑥𝑤

(𝑠)−)]

𝑘𝑤

[𝑠4𝑤−2/. )]∏𝑝𝑒𝑟[dv(𝑠,𝑤)]

1

[𝑠4𝑤−1/⋅)

𝑝

𝑤=1

.                         (6) 

 

Considering  

 

∑ ∑ ∑
1

(𝜗 − 𝑘𝑤 −𝑚𝑤−1)!𝑚𝑤−1! 𝑘𝑤!
𝑛𝑠4(𝑤−1)

,𝑛𝑠4𝑤−3

𝜗

𝑚𝑤−1=0

𝜗

𝑘𝑤=0

 

 

                                               ⋅ 𝑝𝑒𝑟[ G(1)

𝑚𝑤−1

][𝑠4(𝑤−1)/⋅)𝑝𝑒𝑟[ G(2)

𝜗−𝑘𝑤−𝑚𝑤−1

][𝑠4𝑤−3/⋅)𝑝𝑒𝑟[G
(3)

𝑘𝑤

][𝑠4𝑤−2/⋅) 

 

=
1

𝜗!
𝑝𝑒𝑟[G(1) + G(2) + G(3)]

𝜗

,                                                                                     (7) 

where 𝑘𝑤 +𝑚𝑤−1 ≤ 𝜗 and using (7) for each 𝑘𝑤 and 𝑚𝑤−1, in (6), we get 

 

𝑓𝑟1,𝑟2,...,𝑟𝑝:𝑛(x1, x2, . . . , x𝑝) =∏D

𝑏

𝑠=1

∑

𝑛𝜍1 ,𝑛𝜍2 ,...,𝑛𝜍2𝑝

                                                                                 

∫ [∏𝑝𝑒𝑟[F(𝑥𝑤−1
(𝑠) ) − v(𝑠,𝑤−1) + F(𝑥𝑤

(𝑠)−) − F(𝑥𝑤−1
(𝑠) ) + v(𝑠,𝑤) − F(𝑥𝑤

(𝑠)−)]

𝑟𝑤−𝑟𝑤−1−1

[𝜍2𝑤−1/⋅)

𝑝+1

𝑤=1

] 

.∏𝑝𝑒𝑟[dv(𝑠,𝑤)]

1

[𝜍2𝑤/⋅)

𝑝

𝑤=1

, 

where 𝜍2𝑤−1 = 𝑠4(𝑤−1) ∪ 𝑠4𝑤−3 ∪ 𝑠4𝑤−2 and 𝜍2𝑤 = 𝑠4𝑤−1. Thus, the proof is completed. 

 

If 𝑥1 = 𝑥2 =. . . = 𝑥𝑝 = 𝑥, it should be written ∫ ∫ . . . ∫  instead of ∫  in (3), where ∫ ∫ . . . ∫  is to be carried  

 

out over region: 𝐹
𝜍2
(1)(𝑥(𝑠)−) ≤ 𝑣

𝜍2
(1)
(𝑠,1)

≤ 𝑣
𝜍4
(1)
(𝑠,2)

≤. . . ≤ 𝑣
𝜍2𝑝
(1)
(𝑠,𝑝)

≤ 𝐹
𝜍2𝑝
(1)(𝑥(𝑠)), 𝐹

𝜍2
(1)(𝑥(𝑠)−) ≤ 𝑣

𝜍2
(1)
(𝑠,1)

≤ 𝐹
𝜍2
(1)(𝑥(𝑠)),  

 

𝐹
𝜍4
(1)(𝑥(𝑠)−) ≤ 𝑣

𝜍4
(1)
(𝑠,2)

≤ 𝐹
𝜍4
(1)(𝑥(𝑠)),..., 𝐹

𝜍2𝑝
(1)(𝑥(𝑠)−) ≤ 𝑣

𝜍2𝑝
(1)
(𝑠,𝑝)

≤ 𝐹
𝜍2𝑝
(1)(𝑥(𝑠)). 

 

Moreover, if 𝑥1 ≤ 𝑥2 ≤. . . ≤ 𝑥𝑝, it should be written ∫ ∫ . . . ∫  instead of ∫  in (3), where ∫ ∫ . . . ∫  is to be  

 

carried out over region: 𝑣
𝜍2
(1)
(𝑠,1)

≤ 𝑣
𝜍4
(1)
(𝑠,2)

≤. . . ≤ 𝑣
𝜍2𝑝
(1)
(𝑠,𝑝)

, 𝐹
𝜍2
(1)(𝑥1

(𝑠)
−) ≤ 𝑣

𝜍2
(1)
(𝑠,1)

≤ 𝐹
𝜍2
(1)(𝑥1

(𝑠)
),  

 

𝐹
𝜍4
(1)(𝑥2

(𝑠)
−) ≤ 𝑣

𝜍4
(1)
(𝑠,2)

≤ 𝐹
𝜍4
(1)(𝑥2

(𝑠)
),..., 𝐹

𝜍2𝑝
(1)(𝑥𝑝

(𝑠)
−) ≤ 𝑣

𝜍2𝑝
(1)
(𝑠,𝑝)

≤ 𝐹
𝜍2𝑝
(1)(𝑥𝑝

(𝑠)
). 

 

We now express the following theorem for joint df of order statistics of innid discrete random vectors. 

 

Theorem 2.2. 

 

 𝐹𝑟1,𝑟2,…,𝑟𝑝:𝑛(x1, x2, … , x𝑝) 

 

=∏D

𝑏

𝑠=1

∑ ∫ [∏𝑝𝑒𝑟[v(𝑠,𝑤) − v(𝑠,𝑤−1)

𝑟𝑤−𝑟𝑤−1−1

][𝜍2𝑤−1/. )

𝑝+1

𝑤=1

]

𝑉𝑛𝜍1 ,𝑛𝜍2 ,...,𝑛𝜍2𝑝

∏𝑝𝑒𝑟[dv(𝑠,𝑤)

1

][𝜍2𝑤/. )

𝑝

𝑤=1

.                                (8) 

 

Proof. It can be written 

                𝐹𝑟1,𝑟2,...,𝑟𝑝:𝑛(x1, x2, . . . , x𝑝) =∏𝐹𝑟1,𝑟2,...,𝑟𝑝:𝑛(𝑥1
(𝑠)
, 𝑥2

(𝑠)
, . . . , 𝑥𝑝

(𝑠)
)

𝑏

𝑠=1
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=∏ ∑

𝑧1
(𝑠)
,𝑧2
(𝑠)
,...,𝑧𝑝

(𝑠)

𝑓𝑟1,𝑟2,...,𝑟𝑝:𝑛(𝑧1
(𝑠)
, 𝑧2
(𝑠)
, . . . , 𝑧𝑝

(𝑠)
)

𝑏

𝑠=1

. 

The above identity can be expressed as 

𝐹𝑟1,𝑟2,…,𝑟𝑝:𝑛(x1, x2, … , x𝑝) =∏ ∑

𝑧1
(𝑠)
,𝑧2
(𝑠)
,…,𝑧𝑝

(𝑠)

D ∑

𝑛𝜍1 ,𝑛𝜍2 ,…,𝑛𝜍2𝑝

𝑏

𝑠=1

 

 

          ∫ [∏𝑝𝑒𝑟[v(𝑠,𝑤) − v(𝑠,𝑤−1)

𝑟𝑤−𝑟𝑤−1−1

][𝜍2𝑤−1/. )

𝑝+1

𝑤=1

]∏𝑝𝑒𝑟[dv(𝑠,𝑤)

1

][𝜍2𝑤/⋅)

𝑝

𝑤=1

. 

Thus, the proof is completed. 

 

3. RESULTS FOR PROBABILITY AND DISTRIBUTION FUNCTIONS 

 

In this section, results related to pf and df of X𝑟1:𝑛 , X𝑟2:𝑛 , . . . , X𝑟𝑝:𝑛 are given. We now express the following 

result for pf of 𝑟th order statistic of innid discrete random vectors. 

 

Result 3.1. 

𝑓𝑟1:𝑛(𝑥1
(1)) =

1

(𝑟1 − 1)! (𝑛 − 𝑟1)!
∑ ∫ 𝑝𝑒𝑟[v(1,1)

𝑟1−1

][𝜍1/. )

𝐹
𝜍2
(1)(𝑥1

(1)
)

𝐹
𝜍2
(1)(𝑥1

(1)
−)

𝑛𝜍1 ,𝑛𝜍2

𝑝𝑒𝑟[1 − v(1,1)

𝑛−𝑟1

][𝜍3/. )𝑝𝑒𝑟[dv
(1,1)

1

][𝜍2/. )  (9) 

 

Proof. In (3), if 𝑏 = 1, 𝑝 = 1, (9) is obtained. 

 

In Result 3.2-3.3, pf ’s of minimum and maximum order statistics of innid discrete random vectors are given, 

respectively. 

 

Result 3.2. 

𝑓1:𝑛(𝑥1
(1)) =

1

(𝑛 − 1)!
∑ ∫ 𝑝𝑒𝑟[1 − v(1,1)

𝑛−1

][𝜍3/. )

𝐹
𝜍2
(1)(𝑥1

(1)
)

𝐹
𝜍2
(1)(𝑥1

(1)
−)

𝑛𝜍2

𝑝𝑒𝑟[dv(1,1)

1

][𝜍2/. )                                               (10) 

 

Proof. In (9), if 𝑟1 = 1, (10) is obtained. 

Specially, in (10) , by taking 𝑛 = 2  and 𝑣
𝜍3
(1)
(1,1)

= [𝑣
𝜍2
(1)
(1,1)

− 𝐹
𝜍2
(1)(𝑥1

(1)
−)]

𝑓
𝜍3
(1)(𝑥1

(1)
)

𝑓
𝜍2
(1)(𝑥1

(1)
)
+ 𝐹

𝜍3
(1)(𝑥1

(1)
−) , the 

following identity is obtained. 

 

𝑓1:2(𝑥1
(1)) = ∑ ∫ 𝑝𝑒𝑟[1 − v(1,1)

1

][𝜍3/. )

𝐹
𝜍2
(1)(𝑥1

(1)
)

𝐹
𝜍2
(1)(𝑥1

(1)
−)

𝑛𝜍2=1

𝑝𝑒𝑟[dv(1,1)

1

][𝜍2/. ) 

= ∑ ∫ (1 − 𝑣
𝜍3
(1)
(1,1)

) 𝑑𝑣
𝜍2
(1)
(1,1)

𝐹
𝜍2
(1)(𝑥1

(1)
)

𝐹
𝜍2
(1)(𝑥1

(1)
−)

𝑛𝜍2=1

 

 

= ∑ {𝑓
𝜍2
(1)(𝑥1

(1)) +
1

2
𝑓
𝜍3
(1)(𝑥1

(1))𝐹
𝜍2
(1)(𝑥1

(1) −) −
1

2
𝑓
𝜍3
(1)(𝑥1

(1))𝐹
𝜍2
(1)(𝑥1

(1)) − 𝑓
𝜍2
(1)(𝑥1

(1))𝐹
𝜍3
(1)(𝑥1

(1) −)}

𝑛𝜍2=1

 

= 𝑓1(𝑥1
(1)) +

1

2
𝑓2(𝑥1

(1))𝐹1(𝑥1
(1) −) −

1

2
𝑓2(𝑥1

(1))𝐹1(𝑥1
(1)) − 𝑓1(𝑥1

(1))𝐹2(𝑥1
(1) −) 
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+𝑓2(𝑥1
(1)
) +

1

2
𝑓1(𝑥1

(1)
)𝐹2(𝑥1

(1)
−) −

1

2
𝑓1(𝑥1

(1)
)𝐹2(𝑥1

(1)
) − 𝑓2(𝑥1

(1)
)𝐹1(𝑥1

(1)
−). 

 

Morever, the above identity in 𝑖𝑖𝑑 case can be expressed as 

 

𝑓1:2(𝑥1
(1)
) = 2𝑓(𝑥1

(1)
) − 2𝑓(𝑥1

(1)
)𝐹(𝑥1

(1)
) + 𝑓2(𝑥1

(1)
). 

 

This result is obtained, if 𝑖 = 1, 𝑛 = 2 in equation (2) in [6]. Also, the above identity for 𝑥1
(1)
= 1 can be 

written as 

𝑓1:2(1) = 2𝑓(1) − 2𝑓(0)𝑓(1) − 𝑓2(1). 
 

Result 3.3. 

𝑓𝑛:𝑛(𝑥1
(1)
) =

1

(𝑛 − 1)!
∑ ∫ 𝑝𝑒𝑟[v(1,1)

𝑛−1

][𝜍1/⋅)𝑝𝑒𝑟[dv
(1,1)

1

][𝜍2/⋅)

𝐹
𝜍2
(1)(𝑥1

(1)
)

𝐹
𝜍2
(1)(𝑥1

(1)
−)

𝑛𝜍1

                                                    (11) 

 

Proof. In (9), if 𝑟1 = 𝑛, (11) is obtained. 

 

In the following result, we give joint pf of X1:𝑛, X2:𝑛 , . . . , X𝑝:𝑛. 

 

Result 3.4. 

𝑓1,2,… ,𝑝:𝑛(x1, x2, … , x𝑝) =
1

(𝑛 − 𝑝)!
∑ ∫ 𝑝𝑒𝑟[1 − v

𝑛−𝑝

(𝑠,𝑝)][𝜍2𝑝+1/. )

𝑛𝜍1 ,𝑛𝜍2 ,…,𝑛𝜍2𝑝

∏𝑝𝑒𝑟[dv(𝑠,𝑤)

1

][𝜍2𝑤/⋅)

𝑝

𝑤=1

,         (12) 

x1 < x2 <. . . < x𝑝.  

 

Proof. In (3), if 𝑏 = 1, 𝑟1 = 1, 𝑟2 = 2, ...,𝑟𝑝 = 𝑝, (12) is obtained. 

 

We now give three results for df of single order statistics of innid discrete random vectors. 

 

Result 3.5. 

𝐹𝑟1:𝑛(𝑥1
(1)) =

1

(𝑟1 − 1)! (𝑛 − 𝑟1)!
∑ ∫ 𝑝𝑒𝑟[v(1,1)

𝑟1−1

][𝜍1/. )

𝐹
𝜍2
(1)(𝑥1

(1)
)

0𝑛𝜍1 ,𝑛𝜍2

𝑝𝑒𝑟[1 − v(1,1)

𝑛−𝑟1

][𝜍3/. )𝑝𝑒𝑟[dv
(1,1)

1

][𝜍2/. )        (13) 

 

Proof. In (8), if 𝑏 = 1, 𝑝 = 1, (13) is obtained. 

 

Result 3.6. 

𝐹1:𝑛(𝑥1
(1)
) =

1

(𝑛 − 1)!
∑ ∫ 𝑝𝑒𝑟[1 − v(1,1)

𝑛−1

][𝜍3/⋅)

𝐹
𝜍2
(1)(𝑥1

(1)
)

0𝑛𝜍2

𝑝𝑒𝑟[dv(1,1)

1

][𝜍2/. )                                                              (14) 

 

Proof. In (13), if 𝑟1 = 1, (14) is obtained. 

 

Result 3.7. 

𝐹𝑛:𝑛(𝑥1
(1)
) =

1

(𝑛 − 1)!
∑ ∫ 𝑝𝑒𝑟[v(1,1)

𝑛−1

][𝜍1/. )

𝐹
𝜍2
(1)(𝑥1

(1)
)

0𝑛𝜍1

𝑝𝑒𝑟[dv(1,1)

1

][𝜍2/. )                                                                        (15) 

 

Proof. In (13), if 𝑟1 = 𝑛, (15) is obtained. 

 

In the following result, we give joint df of X1:𝑛, X2:𝑛 , . . . , X𝑝:𝑛. 
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Result 3.8. 

𝐹1,2,...,𝑝:𝑛(x1, x2, . . . , x𝑝) =
1

(𝑛 − 𝑝)!
∑ ∫

𝑉𝑛𝜍1 ,𝑛𝜍2 ,...,𝑛𝜍2𝑝

𝑝𝑒𝑟[1 − v
𝑛−𝑝

(1,𝑝)][𝜍2𝑝+1/. )∏𝑝𝑒𝑟[dv(1,𝑤)

1

][𝜍2𝑤/. )

𝑝

𝑤=1

              (16) 

 

Proof. In (8), if 𝑏 = 1, 𝑟1 = 1, 𝑟2 = 2, ...,𝑟𝑝 = 𝑝, (16) is obtained. 
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