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Abstract: In this paper, we analyze and study the operator representations of various polynomial 
sets using a new operator which was introduced by H.B. Mittal [10]. We also look forward in the 
literature in which M.A. Khan and A.K. Shukla [8] designed a new technique by which the finite 
series representation of binomial and trinomial partial differential operators can be easily grasped 
by the learners. 
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1. INTRODUCTION AND PRELIMINARIES 

 
In 1964, W.A. AL-Salam [15] defined an operator and studied the various aspect of the 

operator 

𝜃𝜃 = 𝑥𝑥(1 + 𝑥𝑥𝑥𝑥)     𝐷𝐷 ≡
𝑑𝑑
𝑑𝑑𝑑𝑑

 .                                  (1.1) 

Al-Salam used his operator in a graceful and stylish manner to derive some familiar formulae 
including classical orthogonal polynomials. Al-Salam also established an operator representation 
for the Laguerre, Jacobi, Legendre and other well - known polynomials described in the 
literature. 
In 1971, H.B. Mittal [10] designed an operator which is generalized formof AL-Salam operator 
given by underneath relation 

𝑇𝑇𝑘𝑘 = 𝑥𝑥(𝑘𝑘 + 𝑥𝑥𝑥𝑥),          𝐷𝐷 ≡
𝑑𝑑
𝑑𝑑𝑑𝑑

.                                   (1.2) 
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In 2010, M.A. Khan and K.S. Nisar [9] established an operator representations of Ces𝑎̀𝑎ro, 
Meixner, Sylvester, Shively's psuedo  Laguerre, Jacobi, Hermite, Legendre, Gegenbauer, 
Ultraspherical, Bateman's 𝑍𝑍𝑚𝑚 (x), Bateman's generalization of 𝑍𝑍𝑚𝑚(𝑥𝑥) , Rice's, Sister Celine's, 
Bessel, Tchebycheff, Konhauser, Lagrange and Bedient polynomials by using the AL-Salam 
operator. 
The aim of this write up is to obtain operator representations of various polynomial sets by using 
𝑇𝑇𝑘𝑘 operator [10] calculated by the technique used by M.A. Khan and A.K.Shukla [8].The result 
designed by us is the generalized form of the results obtained by M. A. Khan and K.S. Nisar [9]. 

 
2. The definition, notation and results used 

 
In obtaining the operational representation of various polynomial sets by means of  

𝑇𝑇𝑘𝑘operator introduced by H.B. Mittal [10] 
 

𝑇𝑇𝑘𝑘 = 𝑥𝑥(𝑘𝑘 + 𝑥𝑥𝑥𝑥)  ,                                           (2.1) 
 

which  yields 
 

𝑇𝑇𝑘𝑘 
𝑚𝑚{𝑥𝑥𝛼𝛼} =  (𝛼𝛼 +   𝑘𝑘)𝑚𝑚𝑥𝑥𝛼𝛼+𝑘𝑘 ,                     (2.2) 

 
where 𝑘𝑘 is an integer, 𝑚𝑚 a non-negative integer and 𝛼𝛼is an arbitrary.This operator is essentially 
that of Chak [3] and is closely related to these employed by Carlitz [4] and Gould and Hopper 
[7]. We find it useful in deriving operator representation of various polynomial sets. 

The Leibnitz formula for the operator 𝑇𝑇 is 
 

𝑇𝑇𝑘𝑘 
𝑚𝑚{𝑥𝑥𝑥𝑥𝑥𝑥} = 𝑥𝑥��𝑚𝑚𝑘𝑘� (𝑇𝑇𝑘𝑘 

𝑚𝑚 − 𝑟𝑟 𝑣𝑣)(𝑇𝑇𝑙𝑙 𝑟𝑟𝑢𝑢) ,                     (2.3) 

 
where  𝑇𝑇𝑙𝑙𝑟𝑟 = 𝑥𝑥(1 + 𝑥𝑥𝑥𝑥) is the AL-Salam operator. Eq.(2.3) can be easily verified  by induction. 
If 1

𝑇𝑇𝑘𝑘
 is the inverse of the operator   𝑇𝑇𝑘𝑘, then 

 
1
𝑇𝑇𝑘𝑘 
𝑚𝑚 {𝑥𝑥𝛼𝛼} =

(−1)𝑚𝑚

(𝛼𝛼 −   𝑘𝑘 +  1)𝑚𝑚
𝑥𝑥− 𝛼𝛼 − 𝑚𝑚                             (2.4) 

 
The Pochhammer  symbol is defined as 

 
                                            (𝛼𝛼)𝑚𝑚 =   Γ(𝛼𝛼 +  𝑚𝑚)

Γ(𝛼𝛼)
 .                                               (2.5)  

 
 

(𝛼𝛼)𝑚𝑚 = �
1,                                                             𝑖𝑖𝑖𝑖 𝑚𝑚 = 0

 𝛼𝛼(𝛼𝛼 + 1)(𝛼𝛼 + 2) … �𝛼𝛼 +  (𝑚𝑚− 1)�,     𝑖𝑖𝑖𝑖 𝑚𝑚 = 1, 2, … ,         (2.6) 

for  (2.5), it is easy to find that 
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   (𝛼𝛼)𝑚𝑚 −𝑘𝑘 =   (−1)𝑘𝑘(𝛼𝛼)𝑚𝑚

(1− 𝛼𝛼−𝑚𝑚)𝑘𝑘
 ;            0 ≤ 𝑘𝑘 ≤ 𝑚𝑚,                                                 (2.7) 

 
from [12], one obtains 

 
 

(𝑚𝑚 − 𝑘𝑘)! =  
(−1)𝑘𝑘 𝑚𝑚!

(−𝑚𝑚)𝑘𝑘
                                                                  (2.8) 

 
The hypergeometric function  𝐹𝐹(𝑎𝑎, 𝑏𝑏; 𝑐𝑐; 𝑧𝑧) has been given in [12] 
 

F(a, b; c; z) =  �
(a)m(b)m

(c)m
zm

m!
,                                               (2.9)

∞

m=0

 

 
it converges for |𝑍𝑍| < 1and the binomial expansion is given by 

 

(1 − 𝑥𝑥)−𝑎𝑎 =  �
𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚

𝑚𝑚!
  ;                           |𝑥𝑥| < 1.                     (2.10)

∞

𝑚𝑚= 0

 

 
In particular, the following results have been used 

 
 

𝑇𝑇𝑘𝑘 
𝑟𝑟{𝑥𝑥−𝛼𝛼} =  (−𝛼𝛼 +   𝑘𝑘)𝑟𝑟𝑥𝑥− 𝛼𝛼 + 𝑟𝑟                                               (2.11) 

𝑇𝑇𝑘𝑘 
𝑟𝑟{𝑥𝑥−𝛼𝛼−𝑚𝑚}  =  (−𝛼𝛼 −𝑚𝑚 +   𝑘𝑘)𝑟𝑟𝑥𝑥− 𝛼𝛼− 𝑚𝑚 + 𝑟𝑟                              (2.12) 

𝑇𝑇𝑘𝑘 
𝑚𝑚 − 𝑟𝑟{𝑥𝑥−1+ 𝛼𝛼 + 𝑚𝑚}  =   

(−1 +  𝛼𝛼 +  𝑚𝑚 +  𝑘𝑘)𝑚𝑚(−1)𝑟𝑟

(2 +  2𝑚𝑚 −  𝛼𝛼 −  𝑘𝑘)𝑟𝑟
𝑥𝑥− 1 + 𝛼𝛼 +2𝑚𝑚− 𝑟𝑟    (2.13) 

                 𝑇𝑇𝑘𝑘 
𝑚𝑚 − 𝑟𝑟{𝑥𝑥−𝛼𝛼}     =   

(− 𝛼𝛼 +  𝑘𝑘)𝑚𝑚(−1)𝑟𝑟

(1 +   𝛼𝛼 −  𝑘𝑘 −  𝑚𝑚)𝑟𝑟
𝑥𝑥− 𝛼𝛼 − 𝑟𝑟 + 𝑚𝑚 .                  (2.14) 

 
The definition of the following polynomials are given in terms of hypergeometric function and 
also their notations (𝑠𝑠𝑠𝑠𝑠𝑠[1, 5, 12, 13, 14]). 
 
Legendre polynomials 
It is denoted by the symbol 𝑃𝑃𝑚𝑚(𝑥𝑥) and is defined as 

𝑃𝑃𝑚𝑚(𝑥𝑥) =  𝐹𝐹2 1 �
−𝑚𝑚,𝑚𝑚 + 1;

1;
1 − 𝑥𝑥

2
�  .                                                                  (2.15) 

            
            
    

Hermite polynomial 
It is denoted by the symbol  𝐻𝐻𝑚𝑚(𝑥𝑥)and is defined as 
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𝐻𝐻𝑚𝑚(𝑥𝑥) =   𝐹𝐹2 1 �
−𝑚𝑚
2

− 𝑚𝑚 +1
2 ;

                 −;
−1
𝑥𝑥2
�  .                                               (2.16) 

 
 

Laguerre polynomial 
It is denoted  by  𝐿𝐿𝑚𝑚

(𝛼𝛼)(𝑥𝑥)  and is defined as 

       𝐿𝐿𝑚𝑚
(𝛼𝛼)(𝑥𝑥) =  

(1 +  𝛼𝛼)𝑚𝑚
𝑚𝑚! 

𝐹𝐹2 1 �
−𝑚𝑚;

1 +  𝛼𝛼; 𝑥𝑥� .                                       (2.17) 

 
Jacobi polynomial 
It is denoted by 𝑃𝑃𝑚𝑚

(𝛼𝛼,𝛽𝛽)(𝑥𝑥) and      is defined as 

𝑃𝑃𝑚𝑚
(𝛼𝛼,𝛽𝛽)(𝑥𝑥) =

(1 +  𝛼𝛼)𝑚𝑚
𝑚𝑚!

𝐹𝐹2 1 �
− 𝑚𝑚 1 +  𝛼𝛼 +  𝛽𝛽 + 𝑚𝑚 ;
                              1 +  𝛼𝛼;

1 − 𝑥𝑥
2

� . (2.18) 

 
Ultraspherical  polynomial 
The special case of Jacobi polynomial i.e. ,𝛼𝛼 =  𝛽𝛽  is called Ultraspherical polynomial. 
It is denoted by 𝑃𝑃𝑚𝑚

(𝛼𝛼,𝛼𝛼)(𝑥𝑥)   and is defined as 

𝑃𝑃𝑚𝑚
(𝛼𝛼,𝛼𝛼)(𝑥𝑥) =

(1 +  𝛼𝛼)𝑚𝑚
𝑚𝑚!

𝐹𝐹2 1 �
− 𝑚𝑚 1 + 2𝛼𝛼 +  𝑚𝑚 ;

 1 +  𝛼𝛼;
1 − 𝑥𝑥

2
� .           (2.19) 

 
Gegenbauer polynomial 
It is the generalization of Legendre polynomial denoted by 𝐶𝐶𝑚𝑚𝜈𝜈 (𝑥𝑥).It is defined as 

 

𝐶𝐶𝑚𝑚
(𝜈𝜈)(𝑥𝑥) =

(2𝜈𝜈)𝑚𝑚
𝑚𝑚!

𝐹𝐹2 1 �
− 𝑚𝑚 2𝜈𝜈 +  𝑚𝑚 ;
𝜈𝜈 + 1

2
            ;

1 − 𝑥𝑥
2

� . (2.20) 

 
Bateman's polynomial 
It is denoted by 𝑍𝑍𝑚𝑚(𝑥𝑥) and is defined as 

 
𝑍𝑍𝑚𝑚(𝑥𝑥) =  𝐹𝐹2 2 �

−𝑚𝑚,𝑚𝑚 + 1;
  1,        1   ; 𝑥𝑥�  .                                                                  (2.21) 

Rice's polynomial 
It is denoted by  𝐻𝐻𝑚𝑚(𝜉𝜉,𝑝𝑝, 𝜈𝜈) and is defined as 

 

𝐻𝐻𝑚𝑚(𝜉𝜉, 𝑝𝑝, 𝜈𝜈) =  𝐹𝐹3 2 �
−𝑚𝑚,𝑚𝑚 + 1, 𝜉𝜉;

  1,        𝑝𝑝   ; 𝜈𝜈� .                                  (2.22) 

Ces𝒂̀𝒂ro polynomial 
It is denoted by   𝑔𝑔𝑚𝑚

(𝑠𝑠)(𝑥𝑥) and is defined as 
 

𝑔𝑔𝑚𝑚
(𝑠𝑠)(𝑥𝑥) =  �

𝑠𝑠 +  𝑚𝑚
𝑚𝑚 � 𝐹𝐹2 1 �

−𝑚𝑚,     1;
−𝑠𝑠 −𝑚𝑚 ; 𝑥𝑥� .                                        (2.23) 

 
Meixner polynomial 
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It is denoted by   𝑀𝑀𝑚𝑚(𝑥𝑥;  𝛽𝛽; 𝑐𝑐) and is defined as 
 
                           𝑀𝑀𝑚𝑚(𝑥𝑥;  𝛽𝛽; 𝑐𝑐) =  𝐹𝐹2 1 �

−𝑚𝑚,−𝑥𝑥;
𝛽𝛽         ; 1 −  𝑐𝑐−1� .                            (2.24) 

 
                                       𝛽𝛽 > 0, 0 < 𝑐𝑐 < 1, 𝑥𝑥 = 0, 1, 2, …. 

Krawtochouk polynomial 
It is denoted by  𝐾𝐾𝑚𝑚(𝑥𝑥;𝑃𝑃;  𝑁𝑁)and is defined as 

 
                                  𝐾𝐾𝑚𝑚(𝑥𝑥;𝑃𝑃;  𝑁𝑁) =  𝐹𝐹2 1 �

−𝑚𝑚,−𝑥𝑥;
𝑁𝑁       ; 𝑃𝑃−1� .                            (2.25) 

 
                           0 < 𝑃𝑃 < 1, 𝑥𝑥 = 0, 1, 2, … . ,𝑁𝑁 

Hahn polynomial 
It is denoted by  𝑄𝑄𝑚𝑚(𝑥𝑥;𝛼𝛼;𝛽𝛽,𝑁𝑁) and is defined as 

 
𝑄𝑄𝑚𝑚(𝑥𝑥;𝛼𝛼;𝛽𝛽,𝑁𝑁) = 𝐹𝐹3 2 �

−𝑚𝑚 −𝑥𝑥 𝛼𝛼 + 𝛽𝛽 + 𝑚𝑚 + 1;
−𝑁𝑁 1 + 𝛼𝛼

𝜈𝜈� .                (2.26) 

 
                                                             𝛼𝛼,𝛽𝛽 > 0,𝑚𝑚, 𝑥𝑥 = 0, 1, 2, …. 

Slyvester polynomial 
It is denoted by   𝜙𝜙𝑚𝑚(𝑥𝑥)and is defined as 

 

 𝜙𝜙𝑚𝑚(𝑥𝑥) =   
𝑥𝑥𝑚𝑚

𝑚𝑚!
𝐹𝐹2 1 �

−𝑚𝑚 𝑥𝑥;
−          ; 𝑥𝑥−1� .                                                (2.27) 

 
 
 

Gottlieb polynomial 
It is denoted by  𝑙𝑙𝑚𝑚(𝑥𝑥; 𝜆𝜆)and is defined as 

 
𝑙𝑙𝑚𝑚(𝑥𝑥; 𝜆𝜆) =   𝑒𝑒−𝑚𝑚𝑚𝑚 𝐹𝐹2 1 �

−𝑚𝑚 −𝑥𝑥;
      1         ; 𝑒𝑒𝜆𝜆� .                                            (2.28) 

 
Charlier polynomial 
It is denoted by   𝐶𝐶𝑚𝑚𝑎𝑎 (𝑥𝑥)and is defined as 

 

𝐶𝐶𝑚𝑚𝑎𝑎 (𝑥𝑥) =   (−𝑎𝑎)𝑚𝑚 𝐹𝐹2 0 �
−𝑚𝑚 −𝑥𝑥;
  −         ;

1
𝑎𝑎
� .                                                   (2.29)     

 
Mittag-Lefflerpolynomial 
It is denoted by    𝑔𝑔𝑚𝑚(𝑧𝑧; 𝛾𝛾)and is defined as 

 

𝑔𝑔𝑚𝑚(𝑧𝑧; 𝛾𝛾) =   
(−𝛾𝛾)𝑚𝑚

𝑚𝑚!
𝐹𝐹2 1 �

−𝑚𝑚 −𝑧𝑧;
      𝛾𝛾         ; 2� .                                             (2.30) 
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Shively’s pseudo Laguerrepolynomial 
It is denoted by    𝑅𝑅𝑚𝑚(𝑎𝑎, 𝑥𝑥)and is defined as 

𝑅𝑅𝑚𝑚(𝑎𝑎, 𝑥𝑥) =   
(𝑎𝑎)2𝑚𝑚

𝑚𝑚! (𝑎𝑎)𝑚𝑚
𝐹𝐹2 1 �

−𝑚𝑚, 𝑥𝑥;
  𝑎𝑎 + 𝑚𝑚  ; 𝑥𝑥� .                                            (2.31) 

 
Gegenbauer type generalized Bateman’s  polynomial 
It is the generalization of Bateman’s polynomial in the form of Gegenbauer denoted by  

𝑍𝑍𝑚𝑚𝑣𝑣 (𝑏𝑏, 𝑥𝑥). It is defined as 

 𝑍𝑍𝑚𝑚𝑣𝑣 (𝑏𝑏, 𝑥𝑥) =  𝐹𝐹2 2 �
−𝑚𝑚 𝑚𝑚 + 2𝑣𝑣;
𝑣𝑣 + 1

2
1 + 𝑏𝑏; 𝑥𝑥� .                                                          (2.32)    

 
Generalized Bateman’s polynomial 
It is denoted by 𝑍𝑍𝑚𝑚

(𝛼𝛼,𝛽𝛽)(𝑏𝑏, 𝑥𝑥) and is defined as 
 

 𝑍𝑍𝑚𝑚
(𝛼𝛼,𝛽𝛽)(𝑏𝑏, 𝑥𝑥) =  𝐹𝐹2 2 �

−𝑚𝑚, 1 + 𝛼𝛼 + 𝛽𝛽 + 𝑚𝑚;
                1 + 𝑎𝑎 1 + 𝑏𝑏; 𝑥𝑥� .                                             (2.33)             

 
 
  
 

Tchebicheff polynomial of first kind 𝑻𝑻𝒎𝒎(𝒙𝒙) 
It is denoted by   𝑇𝑇𝑚𝑚(𝑥𝑥) and is defined as 

 
 

𝑇𝑇𝑚𝑚(𝑥𝑥) =      
𝑚𝑚!
�12�𝑚𝑚

𝑃𝑃𝑚𝑚
�−12 ,12� 𝐹𝐹2 1 �

−𝑚𝑚 𝑚𝑚;
1
2 ;

1 − 𝑥𝑥
2

� .                   (2.34) 

 
Tchebicheff polynomial of the second kind 𝑼𝑼𝒎𝒎(𝒙𝒙) 
It is denoted by   𝑈𝑈𝑚𝑚(𝑥𝑥)and is defined as 

          𝑈𝑈𝑚𝑚(𝑥𝑥) =      (𝑚𝑚+1)!
�32�𝑚𝑚

𝑃𝑃𝑚𝑚
�12,12� =  (𝑚𝑚 + 1) 𝐹𝐹2 1 �

−𝑚𝑚 𝑚𝑚 + 2;
3
2 ;

1−𝑥𝑥
2
� .      (2.35) 

Generalized Rice’s  polynomial𝐻𝐻𝑚𝑚
(𝛼𝛼,𝛽𝛽)(𝜉𝜉, 𝑝𝑝, 𝜈𝜈) 

Khandekar [11] defined a Jacobi type  generalization of Rice’s polynomial  𝐻𝐻𝑚𝑚
(𝛼𝛼,𝛽𝛽)(𝜉𝜉, 𝑝𝑝, 𝜈𝜈). 

It is denoted by 𝐻𝐻𝑚𝑚
(𝛼𝛼,𝛽𝛽)(𝜉𝜉, 𝑝𝑝, 𝜈𝜈) and is defined as 

            𝐻𝐻𝑚𝑚
(𝛼𝛼,𝛽𝛽)(𝜉𝜉,𝑝𝑝, 𝜈𝜈) =  𝐹𝐹3 2 �

−𝑚𝑚, 1 + 𝛼𝛼 + 𝛽𝛽 + 𝑚𝑚, 𝜉𝜉;
                1 + 𝛼𝛼 𝑝𝑝; 𝜈𝜈� .            (2.36) 

 
Bessel  polynomial𝒚𝒚𝒎𝒎(𝒙𝒙) 
It is denoted by   𝑦𝑦𝑚𝑚(𝑥𝑥)and is defined as 

 
                     𝑦𝑦𝑚𝑚(𝑥𝑥) =       𝐹𝐹2 0 �

−𝑚𝑚 𝑚𝑚 + 1;
   −                ;

−𝑥𝑥
2
� .                                            (2.37) 

Generalized Bessel polynomial 𝒚𝒚𝒎𝒎(𝒂𝒂,𝒃𝒃,𝒙𝒙) 
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It is denoted by   𝑦𝑦𝑚𝑚(𝑎𝑎, 𝑏𝑏, 𝑥𝑥)and is defined as 
 
                         𝑦𝑦𝑚𝑚(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) =    𝐹𝐹2 0 �

−𝑚𝑚 𝑎𝑎 − 1 + 𝑚𝑚;
     −                      ;

−𝑥𝑥
𝑏𝑏
� .                            (2.38) 

Lagrange polynomial 
It is denoted by 𝑔𝑔𝑚𝑚

(𝛼𝛼,𝛽𝛽)(𝑥𝑥,𝑦𝑦) and is defined as 
 

                                            𝑔𝑔𝑚𝑚
(𝛼𝛼,𝛽𝛽)(𝑥𝑥, 𝑦𝑦) =  (𝛼𝛼)𝑚𝑚

𝑚𝑚!
𝐹𝐹2 1 �

−𝑚𝑚, 𝛽𝛽;
1 − 𝛼𝛼 −𝑚𝑚;

𝑦𝑦
𝑥𝑥� .                (2.39) 

Sister-Celine’s polynomial 
Sister Celine’s (Fasenmyer [6]) denoted her polynomial by the symbol 

𝑓𝑓𝑚𝑚 �
𝑎𝑎1,𝑎𝑎2, … . , 𝑎𝑎𝑝𝑝;
𝑏𝑏1, 𝑏𝑏2. … . , 𝑏𝑏𝑞𝑞 𝑥𝑥�. 

It is defined as 

         𝑓𝑓𝑚𝑚 �
𝑎𝑎1,𝑎𝑎2, … . 𝑎𝑎𝑝𝑝;
𝑏𝑏1𝑏𝑏2. … . 𝑏𝑏𝑞𝑞 𝑥𝑥� =  𝐹𝐹𝑞𝑞+2𝑝𝑝+2 �

−𝑚𝑚,𝑚𝑚 + 1,𝑎𝑎1,𝑎𝑎2, … . , 𝑎𝑎𝑝𝑝;

1, 1
2

,             𝑏𝑏1𝑏𝑏2, … . , 𝑏𝑏𝑞𝑞; 𝑥𝑥� .            (2.40) 

Konhauserbi-orthogonal polynomial 
It is denoted by 𝑍𝑍𝑚𝑚

(𝛼𝛼)(𝑥𝑥; 𝑘𝑘) and is defined as 
 
                                                  𝑍𝑍𝑚𝑚

(𝛼𝛼)(𝑥𝑥; 𝑘𝑘) =  lim
|β|⟶inf

�Jm
(α,β) �1 − 2x

β �� .              (2.41) 

Bedient’spolynomial 
Bedient [12] introduced Appell’s  𝐹𝐹2,𝐹𝐹3 in his study. It is defined as 

                            𝑅𝑅𝑚𝑚(𝛽𝛽, 𝛾𝛾; 𝑥𝑥) =   (2𝑥𝑥)𝑚𝑚(𝛽𝛽)𝑚𝑚
𝑚𝑚!

𝐹𝐹2 1 �
−𝑚𝑚

2
, 𝑚𝑚
2

+ 1, 𝛾𝛾 − 𝛽𝛽 ;
𝛾𝛾, 1 − 𝛽𝛽 −𝑚𝑚  ;

1
𝑥𝑥2
� .       (2.42) 

 
and 

 

     𝐺𝐺𝑚𝑚(𝛼𝛼,𝛽𝛽; 𝑥𝑥)  = (𝛼𝛼)𝑚𝑚(𝛽𝛽)𝑚𝑚(2𝑥𝑥)𝑚𝑚

𝑚𝑚!(𝛼𝛼+𝛽𝛽)𝑚𝑚
𝐹𝐹2 1 �

−𝑚𝑚
2

, 𝑚𝑚
2

+ 1
2

, 1 − 𝛼𝛼 − 𝛽𝛽 −𝑚𝑚 ;
1 − 𝛼𝛼 −𝑚𝑚, 1 − 𝛽𝛽 −𝑚𝑚  ;

1
𝑥𝑥2
� .       (2.43) 

 
3. Operator Representations 

By using the technique developed by M.A.Khan and A.K.Shukla [8] the following operator 
representations of various polynomial sets have been obtained. 

If 𝐷𝐷𝑥𝑥 = 𝜕𝜕
𝜕𝜕𝜕𝜕

,𝐷𝐷𝑦𝑦 = 𝜕𝜕
𝜕𝜕𝜕𝜕

   𝑎𝑎𝑎𝑎𝑎𝑎  𝐷𝐷𝑧𝑧 = 𝜕𝜕
𝜕𝜕𝜕𝜕

   , we consider 

𝑇𝑇𝑘𝑘(𝑥𝑥) = 𝑥𝑥 �𝑘𝑘 + 𝑥𝑥
𝜕𝜕
𝜕𝜕𝜕𝜕�

 

𝑇𝑇𝑙𝑙(𝑦𝑦) = 𝑦𝑦 �𝑘𝑘 + 𝑦𝑦
𝜕𝜕
𝜕𝜕𝜕𝜕�

 

and 

𝑇𝑇𝑛𝑛(𝑧𝑧) = 𝑧𝑧 �𝑘𝑘 + 𝑧𝑧
𝜕𝜕
𝜕𝜕𝜕𝜕�

 

then the binomial expansion for  (𝑇𝑇𝑘𝑘+𝑇𝑇𝑙𝑙)𝑚𝑚 as 
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                                                     (𝑇𝑇𝑘𝑘+𝑇𝑇𝑙𝑙)𝑚𝑚 =  ∑ �𝑚𝑚𝑟𝑟 �

∞
𝑟𝑟=0 𝑇𝑇𝑘𝑘𝑚𝑚−𝑟𝑟𝑇𝑇𝑙𝑙𝑟𝑟 .                               (3.1) 

 
which is similar to the operator  (𝐷𝐷𝑥𝑥+𝐷𝐷𝑦𝑦)𝑚𝑚 given by  M.A. Khan and A.K. Shukla [8]. 

(𝐷𝐷𝑥𝑥+𝐷𝐷𝑦𝑦)𝑚𝑚 =  ��
𝑚𝑚
𝑟𝑟
�

𝑚𝑚

𝑟𝑟=0

𝐷𝐷𝑥𝑥𝑚𝑚−𝑟𝑟𝐷𝐷𝑦𝑦𝑟𝑟 .   

where�𝑚𝑚𝑟𝑟 � =  𝑚𝑚!
𝑟𝑟!  (𝑚𝑚 − 𝑟𝑟)!

 and also writing the finite series on the right of  (3.1) as 

(𝑇𝑇𝑘𝑘+𝑇𝑇𝑙𝑙)𝑚𝑚 =  ��
𝑚𝑚
𝑟𝑟
�

∞

𝑟𝑟=0

𝑇𝑇𝑘𝑘𝑟𝑟  𝑇𝑇𝑙𝑙𝑚𝑚−𝑟𝑟 ,                                                       (3.2) 

if 𝐹𝐹(𝑥𝑥,𝑦𝑦) is a function of  𝑥𝑥 and  𝑦𝑦 then obtained the following from  (3.1) and  (3.2). 

(𝑇𝑇𝑘𝑘+𝑇𝑇𝑙𝑙)𝑚𝑚 𝐹𝐹(𝑥𝑥,𝑦𝑦) =  �
(−𝑚𝑚)𝑟𝑟(−1)𝑟𝑟

𝑟𝑟!

𝑚𝑚

𝑟𝑟=0

𝑇𝑇𝑘𝑘𝑚𝑚−𝑟𝑟 𝑇𝑇𝑙𝑙𝑟𝑟 𝐹𝐹(𝑥𝑥,𝑦𝑦)               (3.3) 

(𝑇𝑇𝑘𝑘+𝑇𝑇𝑙𝑙)𝑚𝑚 𝐹𝐹(𝑥𝑥,𝑦𝑦) =  �
(−𝑚𝑚)𝑟𝑟(−1)𝑟𝑟

𝑟𝑟!

𝑚𝑚

𝑟𝑟=0

𝑇𝑇𝑘𝑘𝑟𝑟  𝑇𝑇𝑙𝑙𝑚𝑚−𝑟𝑟 𝐹𝐹(𝑥𝑥,𝑦𝑦)               (3.4) 

Considerably, if 𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦) then we get the following results from  (3.3) and  (3.4) 
              (𝑇𝑇𝑘𝑘+𝑇𝑇𝑙𝑙)𝑚𝑚 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦) =  ∑ (−𝑚𝑚)𝑟𝑟(−1)𝑟𝑟

𝑟𝑟!
𝑚𝑚
𝑟𝑟=0 𝑇𝑇𝑘𝑘𝑟𝑟   𝑓𝑓(𝑥𝑥)𝑇𝑇𝑙𝑙𝑟𝑟𝑔𝑔(𝑦𝑦)                    (3.5)     

                                                    =  ∑ (−𝑚𝑚)𝑟𝑟(−1)𝑟𝑟

𝑟𝑟!
𝑚𝑚
𝑟𝑟=0 𝑇𝑇𝑘𝑘𝑟𝑟  𝑓𝑓(𝑥𝑥) 𝑇𝑇𝑙𝑙𝑚𝑚−𝑟𝑟 𝑔𝑔(𝑦𝑦).             (3.6) 

 
4. Main results 

Now, by considering the particular values of  𝑓𝑓(𝑥𝑥) and  𝑔𝑔(𝑥𝑥)  in (3.5)and(3.6), we obtain 
the following partial binomial differential operator representations of the polynomials given 
above 
                  (𝑇𝑇𝑘𝑘+𝑇𝑇𝑙𝑙)𝑚𝑚{𝑥𝑥− 𝑚𝑚− 𝑘𝑘𝑦𝑦𝑚𝑚 + 1 − 𝑙𝑙} =  (−1)𝑚𝑚 𝑚𝑚!  𝑥𝑥−𝑘𝑘𝑦𝑦𝑚𝑚 + 1− 𝑙𝑙𝑃𝑃𝑚𝑚�1 − 2𝑦𝑦

𝑥𝑥 �.           (4.1) 
                (1+𝑇𝑇𝑘𝑘)𝑚𝑚�𝑥𝑥− (𝑚𝑚+ 𝑘𝑘)+𝑟𝑟� =    𝑥𝑥−𝑚𝑚 − 𝑘𝑘𝐻𝐻𝑚𝑚� 1

2𝑥𝑥�.                                                      (4.2)                         
 (𝑇𝑇𝑘𝑘 + 1)𝑚𝑚{𝑥𝑥− 𝛼𝛼 − 𝑘𝑘 − 𝑚𝑚}   =  (−1)𝑚𝑚 𝑚𝑚!   𝑥𝑥−𝛼𝛼 − 𝑘𝑘𝐿𝐿𝑛𝑛

(𝛼𝛼)�1𝑥𝑥�,                                              (4.3) 
or 

�1 +  
1
𝑇𝑇𝑘𝑘�

𝑚𝑚
{𝑥𝑥− 𝛼𝛼 − 𝑘𝑘 𝑥𝑥𝑚𝑚 + 1 − 𝑙𝑙} =   

𝑚𝑚!
𝑥𝑥𝛼𝛼 + 𝑘𝑘(1 + 𝛼𝛼)𝑛𝑛

𝐿𝐿𝑚𝑚
(𝛼𝛼) �1

𝑥𝑥
� .                                     (4.4)       

 (𝑇𝑇𝑘𝑘+𝑇𝑇𝑙𝑙)𝑚𝑚 �𝑥𝑥− 𝛼𝛼 – 𝑚𝑚− 𝑘𝑘𝑦𝑦𝛼𝛼 +𝛽𝛽 + 𝑚𝑚 + 1 – 𝑙𝑙�  

 =  (−1)𝑚𝑚 𝑚𝑚!  𝑥𝑥−𝛼𝛼−𝑘𝑘𝑦𝑦𝛼𝛼 +𝛽𝛽 + 𝑚𝑚 + 1− 𝑙𝑙𝑃𝑃𝑚𝑚
(𝛼𝛼,𝛽𝛽)�1 − 2𝑦𝑦

𝑥𝑥 �.                                                        (4.5) 
 (𝑇𝑇𝑘𝑘+𝑇𝑇𝑙𝑙)𝑚𝑚 �𝑥𝑥− 𝛼𝛼 – 𝑚𝑚− 𝑘𝑘𝑦𝑦2𝛼𝛼  + 𝑚𝑚 + 1 – 𝑙𝑙�  

        =  (−1)𝑚𝑚 𝑚𝑚!  𝑥𝑥−𝛼𝛼−𝑘𝑘𝑦𝑦2𝛼𝛼  + 𝑚𝑚 + 1− 𝑙𝑙𝑃𝑃𝑚𝑚
(𝛼𝛼,𝛼𝛼)�1 − 2𝑦𝑦

𝑥𝑥 �.                                                  (4.6) 

 (𝑇𝑇𝑘𝑘 +  𝑇𝑇𝑙𝑙)𝑚𝑚{𝑥𝑥− 𝑚𝑚 – 𝜈𝜈 +12 –𝑘𝑘 𝑦𝑦𝑚𝑚 + 2𝜈𝜈−𝑙𝑙 }      

          =        
(− 1)𝑚𝑚�𝜈𝜈 +12�𝑚𝑚

   𝑚𝑚!

(2𝜈𝜈)𝑚𝑚
𝑥𝑥−  𝜈𝜈 + 12 −  𝑘𝑘𝑦𝑦𝑚𝑚 + 2𝜈𝜈 – 𝑙𝑙𝐶𝐶𝑚𝑚𝜈𝜈 �−  2𝑦𝑦𝑥𝑥 � .                                       (4.7)     

 (𝑇𝑇𝑘𝑘𝑇𝑇𝑙𝑙 −  𝑇𝑇𝑛𝑛)𝑚𝑚 {𝑥𝑥− 𝑚𝑚 – 𝑘𝑘𝑦𝑦 – 𝑚𝑚 – 𝑙𝑙𝑧𝑧𝑚𝑚 + 1 – 𝑛𝑛 } 
=   (𝑚𝑚!)2𝑥𝑥− 𝑘𝑘𝑦𝑦− 𝑙𝑙𝑧𝑧𝑚𝑚 + 1 – 𝑛𝑛𝑍𝑍𝑚𝑚 �

𝑧𝑧
𝑥𝑥𝑥𝑥�

.                                                                              (4.8) 
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  �𝑇𝑇𝑝𝑝𝑇𝑇𝑞𝑞 −  𝑇𝑇𝑘𝑘𝑇𝑇𝑙𝑙�
𝑚𝑚{𝑢𝑢− 𝑚𝑚 – 𝑝𝑝𝑣𝑣− 𝑝𝑝 – 𝑚𝑚 + 1 – 𝑞𝑞𝑥𝑥𝑚𝑚 + 1 – 𝑘𝑘𝑦𝑦𝜉𝜉− 𝑙𝑙 }  

=  𝑚𝑚!    
(𝑝𝑝)𝑚𝑚𝑥𝑥𝑚𝑚 + 1 – 𝑘𝑘𝑦𝑦𝜉𝜉 − 𝑙𝑙

𝑢𝑢𝑝𝑝𝑣𝑣𝑝𝑝 + 𝑞𝑞 −1 𝐻𝐻𝑚𝑚 �𝜉𝜉, 𝑝𝑝, 𝑥𝑥𝑥𝑥
𝑢𝑢𝑢𝑢
� .                                                                      (4.9) 

 
 (𝑇𝑇𝑘𝑘𝑇𝑇𝑙𝑙 −  𝑇𝑇𝑛𝑛)𝑚𝑚 �𝑥𝑥− 𝑚𝑚 – 𝜈𝜈 + 1 2 −  𝑘𝑘𝑦𝑦− 𝑙𝑙 – 𝑏𝑏 – 𝑚𝑚𝑧𝑧𝑚𝑚 + 2𝜈𝜈 – 𝑛𝑛�  

=
�𝜈𝜈 + 1

2�𝑚𝑚
(1 +  𝑏𝑏)𝑚𝑚𝑧𝑧𝑚𝑚 + 2𝜈𝜈 – 𝑛𝑛

𝑥𝑥𝜈𝜈+ 𝑘𝑘 −12  𝑦𝑦𝑙𝑙 + 𝑏𝑏
𝑍𝑍𝑚𝑚𝜈𝜈 �𝑏𝑏, 𝑧𝑧

𝑦𝑦𝑦𝑦
�                                                       (4.10) 

 
 (𝑇𝑇𝑘𝑘𝑇𝑇𝑙𝑙 −  𝑇𝑇𝑛𝑛)𝑚𝑚 �𝑥𝑥− 𝑚𝑚 – 𝑎𝑎 – 𝑘𝑘   𝑦𝑦− 𝑙𝑙 – 𝑏𝑏 – 𝑚𝑚𝑧𝑧1 + 𝛼𝛼 +  𝛽𝛽 + 𝑚𝑚 – 𝑛𝑛�   

     = (1 + 𝑎𝑎)𝑚𝑚(1 + 𝑏𝑏)𝑚𝑚𝑧𝑧1 + 𝛼𝛼 +  𝛽𝛽 + 𝑚𝑚 – 𝑛𝑛

𝑥𝑥𝑎𝑎 + 𝑘𝑘𝑦𝑦𝑏𝑏 + 𝑙𝑙 𝑍𝑍𝑚𝑚
(𝛼𝛼,𝛽𝛽) �𝑏𝑏, 𝑧𝑧

𝑥𝑥𝑥𝑥� .                                                              (4.11) 

 
 �𝑇𝑇𝑝𝑝𝑇𝑇𝑞𝑞 −  𝑇𝑇𝑘𝑘𝑇𝑇𝑙𝑙�

𝑚𝑚 �𝑢𝑢− 𝑚𝑚 − 𝑝𝑝 −  𝛼𝛼𝑣𝑣− 𝑝𝑝 − 𝑚𝑚 + 1 – 𝑞𝑞  𝑥𝑥𝑚𝑚 + 1 + 𝛼𝛼+ 𝛽𝛽 − 𝑘𝑘 𝑦𝑦𝜉𝜉− 𝑙𝑙�  

      = 𝑚𝑚!    (𝑝𝑝)𝑚𝑚
𝑥𝑥1 + 𝛼𝛼+ 𝛽𝛽 + 𝑚𝑚 – 𝑘𝑘𝑦𝑦𝜉𝜉− 𝑙𝑙

𝑢𝑢𝑝𝑝 + 𝛼𝛼    𝑣𝑣𝑝𝑝 + 𝑞𝑞 −1 𝐻𝐻𝑚𝑚
(𝛼𝛼,𝛽𝛽)�𝜉𝜉, 𝑝𝑝, 𝑥𝑥𝑥𝑥𝑢𝑢𝑢𝑢�.                                                                   (4.12)        

 
(1 +  𝑇𝑇𝑘𝑘)𝑚𝑚{𝑥𝑥𝑚𝑚 + 1 − 𝑘𝑘}   =  𝑥𝑥𝑚𝑚 + 1 − 𝑘𝑘  𝑦𝑦𝑚𝑚(2𝑥𝑥)                                                        (4.13)  

�1 + 
1
𝑇𝑇𝑘𝑘
�
𝑚𝑚

{𝑥𝑥𝑎𝑎 − 1 + 𝑚𝑚 − 𝑘𝑘}   =  𝑥𝑥𝑎𝑎 − 1 + 𝑚𝑚 − 𝑘𝑘𝑦𝑦𝑚𝑚 �𝑎𝑎, 𝑏𝑏,
−𝑥𝑥
𝑏𝑏
� .                                   (4.14)   

(𝑇𝑇𝑘𝑘 + 𝑇𝑇𝑙𝑙)𝑚𝑚�𝑥𝑥1/2− 𝑚𝑚 − 𝑘𝑘𝑦𝑦𝑚𝑚 − 𝑙𝑙�  =  (− 1)𝑚𝑚 �
1
2�𝑚𝑚

𝑥𝑥1/2− 𝑘𝑘𝑦𝑦𝑚𝑚 – 𝑙𝑙𝑇𝑇𝑚𝑚 �1 −   2𝑦𝑦
𝑥𝑥
� .   (4.15) 

 (𝑇𝑇𝑘𝑘 +  𝑇𝑇𝑙𝑙)𝑚𝑚 �𝑥𝑥
−12 −  𝑚𝑚  –  𝑘𝑘𝑦𝑦𝑚𝑚 + 2 – 𝑙𝑙�  =  (− 1)𝑚𝑚 �3

2
�
𝑚𝑚
𝑥𝑥−

1
2− 𝑘𝑘𝑦𝑦𝑚𝑚 + 2 − 𝑙𝑙𝑈𝑈𝑚𝑚�1 −

  2𝑦𝑦𝑥𝑥 �.                                                                      (4.16) 

 �𝑇𝑇𝑘𝑘𝑇𝑇𝑙𝑙𝑇𝑇𝑙𝑙1𝑇𝑇𝑙𝑙2 ⋯   𝑇𝑇𝑙𝑙𝑞𝑞  −   𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛1𝑇𝑇𝑛𝑛2 ⋯  𝑇𝑇𝑛𝑛𝑝𝑝�
𝑚𝑚

 

     �𝑥𝑥− 𝑘𝑘 − 𝑚𝑚𝑦𝑦
1
2− 𝑙𝑙 − 𝑚𝑚𝑣𝑣1

− 𝑏𝑏1− 𝑙𝑙1− 𝑚𝑚 + 1𝑣𝑣2
− 𝑏𝑏2− 𝑙𝑙2− 𝑚𝑚 + 1 ⋯     𝑣𝑣𝑞𝑞

− 𝑏𝑏{𝑞𝑞}− 𝑙𝑙𝑞𝑞− 𝑚𝑚 + 1
 

   𝑧𝑧𝑚𝑚 + 1 − 𝑛𝑛𝑤𝑤1
𝑎𝑎1− 𝑛𝑛1   𝑤𝑤2

𝑎𝑎2− 𝑛𝑛2 ⋯𝑤𝑤𝑝𝑝
𝑎𝑎𝑝𝑝− 𝑛𝑛𝑝𝑝�      

 = �𝑚𝑚!  (−1)𝑚𝑚 𝑞𝑞 �1
2
�
𝑚𝑚

(𝑏𝑏1)𝑚𝑚(𝑏𝑏2)𝑚𝑚 … �𝑏𝑏𝑞𝑞�𝑚𝑚𝑥𝑥
−𝑘𝑘𝑦𝑦

1
2− 𝑙𝑙 

 𝑣𝑣1
− 𝑏𝑏1− 𝑙𝑙1+ 1𝑣𝑣1

− 𝑏𝑏1− 𝑙𝑙1− 𝑚𝑚 + 1  ⋯   𝑣𝑣𝑞𝑞
− 𝑏𝑏𝑞𝑞− 𝑙𝑙𝑞𝑞+ 1𝑤𝑤1

𝑎𝑎1− 𝑛𝑛1𝑧𝑧𝑚𝑚 + 1 − 𝑛𝑛 𝑤𝑤2
𝑎𝑎2− 𝑛𝑛2 ⋯𝑤𝑤𝑝𝑝

𝑎𝑎𝑝𝑝− 𝑛𝑛𝑝𝑝� 

 

 ×   𝑓𝑓𝑚𝑚 �
𝑎𝑎1, … , 𝑎𝑎𝑝𝑝  ;
𝑏𝑏1, … , 𝑏𝑏𝑞𝑞;

𝑧𝑧 𝑤𝑤1𝑤𝑤2⋯   𝑤𝑤𝑝𝑝
𝑥𝑥 𝑦𝑦 𝑣𝑣1𝑣𝑣2 ⋯  𝑣𝑣𝑞𝑞

�                                                   (4.17) 

where 

𝑓𝑓𝑚𝑚 �
𝑎𝑎1, … ,𝑎𝑎𝑝𝑝  ;
𝑏𝑏1, … , 𝑏𝑏𝑞𝑞;

𝑧𝑧 𝑤𝑤1𝑤𝑤2⋯   𝑤𝑤𝑝𝑝
𝑥𝑥 𝑦𝑦 𝑣𝑣1𝑣𝑣2 ⋯  𝑣𝑣𝑞𝑞

� =   𝐹𝐹𝑝𝑝 + 2 𝑞𝑞 + 2 �
−𝑛𝑛,𝑛𝑛 + 1,𝑎𝑎1, … ,𝑎𝑎𝑝𝑝  ;
        1, 1/2,   𝑏𝑏1, … , 𝑏𝑏𝑞𝑞;  𝑥𝑥  �. 

 

�𝑇𝑇𝑙𝑙1𝑇𝑇𝑙𝑙2 ⋯  𝑇𝑇𝑙𝑙𝑘𝑘 ,−  �𝑥𝑥
𝑘𝑘
��

𝑚𝑚
�𝑦𝑦1

− 𝛼𝛼 − 1
𝑘𝑘  −𝑚𝑚 − 𝑙𝑙1+ 1

𝑦𝑦2
−  𝛼𝛼 − 2

𝑘𝑘   −𝑚𝑚 − 𝑙𝑙2+ 1
⋯   𝑦𝑦𝑘𝑘

− 𝛼𝛼 − 𝑘𝑘
𝑘𝑘   −𝑚𝑚 − 𝑙𝑙𝑘𝑘+ 1

� 

 

          =  
(𝛼𝛼 +  1)𝑘𝑘 𝑚𝑚     𝑚𝑚!
𝑘𝑘𝑘𝑘𝑘𝑘(1 +  𝛼𝛼)2𝑚𝑚

𝑍𝑍𝑚𝑚𝛼𝛼 �
𝑥𝑥

𝑦𝑦1𝑦𝑦2 ⋯   𝑦𝑦𝑘𝑘
;  𝑘𝑘 � .                                          (4.18) 
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(𝑇𝑇𝑘𝑘 + 𝑇𝑇𝑙𝑙)𝑚𝑚{𝑥𝑥𝛼𝛼 − 𝑘𝑘𝑦𝑦𝛼𝛼− 𝑙𝑙} =  𝑚𝑚!   𝑥𝑥𝛼𝛼 − 𝑘𝑘𝑦𝑦𝛽𝛽− 𝑙𝑙𝑔𝑔𝑚𝑚

(𝛼𝛼,𝛽𝛽)(𝑥𝑥,𝑦𝑦) .              (4.19) 
 

(𝑇𝑇𝑘𝑘 + 𝑇𝑇𝑙𝑙)𝑚𝑚{𝑥𝑥𝑠𝑠 + 1 − 𝑘𝑘𝑦𝑦1 − 𝑙𝑙}  =  𝑚𝑚!   𝑥𝑥𝑠𝑠 + 1 + 𝑚𝑚 − 𝑘𝑘𝑦𝑦1 − 𝑙𝑙𝑔𝑔𝑚𝑚
(𝑠𝑠) �𝑦𝑦

𝑥𝑥
� .      (4.20) 

𝑔𝑔(1 −  𝑇𝑇𝑙𝑙)𝑚𝑚{𝑦𝑦𝑥𝑥 − 𝑙𝑙} =  𝑚𝑚!  𝑥𝑥−𝑚𝑚𝑦𝑦𝑥𝑥 − 𝑙𝑙𝜙𝜙𝑚𝑚 �
1
𝑦𝑦�

.                                         (4.21) 

 (𝑇𝑇𝑘𝑘 +  𝑇𝑇𝑙𝑙)𝑚𝑚{𝑥𝑥𝑁𝑁 − 𝑚𝑚 + 1 − 𝑘𝑘𝑦𝑦− 𝑧𝑧 − 𝑙𝑙}  
     =  (− 1)𝑚𝑚(− 𝑁𝑁)𝑚𝑚𝑥𝑥𝑁𝑁 + 1 − 𝑘𝑘𝑦𝑦−  𝑧𝑧 −𝑙𝑙𝐾𝐾𝑚𝑚 �𝑧𝑧, 𝑥𝑥𝑦𝑦,𝑁𝑁 � .                                              (4.22)  

 (𝑇𝑇𝑘𝑘  +  𝑇𝑇𝑙𝑙)𝑚𝑚{𝑥𝑥−𝛽𝛽− 𝑚𝑚 + 1 − 𝑘𝑘𝑦𝑦− 𝑧𝑧 − 𝑙𝑙}         
     =  (− 1)𝑚𝑚𝑥𝑥−𝛽𝛽 + 1 − 𝑘𝑘𝑦𝑦− 𝑧𝑧 − 𝑙𝑙𝑀𝑀𝑚𝑚 �𝑧𝑧,𝛽𝛽, 𝑥𝑥

𝑥𝑥−𝑦𝑦� .                                                         (4.23)         

              �𝑇𝑇𝑝𝑝𝑇𝑇𝑙𝑙  −   𝑦𝑦 𝑢𝑢
𝑧𝑧 𝑣𝑣𝑇𝑇𝑞𝑞𝑇𝑇𝑛𝑛�

𝑚𝑚�𝑢𝑢𝑁𝑁 − 𝑚𝑚 + 1 − 𝑝𝑝𝑦𝑦𝛼𝛼 − 𝑙𝑙𝑣𝑣− 𝑥𝑥 − 𝑞𝑞𝑧𝑧𝛼𝛼 + 𝛽𝛽 + 𝑚𝑚 + 1 − 𝑛𝑛� 
   =  (−𝑁𝑁)𝑚𝑚(𝛼𝛼 +  1)𝑚𝑚𝑢𝑢𝑁𝑁 + 1 − 𝑝𝑝𝑦𝑦− 𝛼𝛼 − 𝑙𝑙𝑣𝑣− 𝑥𝑥 − 𝑞𝑞𝑧𝑧𝛼𝛼 + 𝛽𝛽 + 𝑚𝑚 + 1 − 𝑛𝑛𝑄𝑄𝑚𝑚(𝑥𝑥,𝛼𝛼,𝛽𝛽,𝑁𝑁). (4.24) 

�𝑇𝑇𝑙𝑙  +   
𝑦𝑦�1 −  𝑒𝑒𝜆𝜆�

𝑧𝑧
𝑇𝑇𝑛𝑛�

𝑚𝑚

{𝑦𝑦− 𝑚𝑚 − 1𝑧𝑧− 𝑥𝑥 − 𝑛𝑛} =  (−1)𝑚𝑚 𝑚𝑚!  𝑒𝑒𝑚𝑚𝑚𝑚𝑦𝑦−𝑙𝑙𝑧𝑧− 𝑥𝑥 − 𝑛𝑛𝑙𝑙𝑚𝑚(𝑥𝑥 ;  𝜆𝜆).  (4.25) 

�1 −  1
𝑎𝑎𝑎𝑎

 𝑇𝑇𝑙𝑙�
𝑚𝑚

{𝑦𝑦− 𝑥𝑥 − 𝑙𝑙} =     
1

(− 𝑎𝑎)𝑚𝑚𝑦𝑦𝑥𝑥 + 𝑙𝑙 𝐶𝐶𝑚𝑚
𝑎𝑎 (𝑥𝑥).                                                   (4.26) 

 
�𝑇𝑇𝑘𝑘  +  2𝑥𝑥

𝑦𝑦
𝑇𝑇𝑙𝑙�

𝑚𝑚
{𝑥𝑥𝛾𝛾 − 𝑚𝑚 + 1 − 𝑘𝑘𝑦𝑦𝑧𝑧 − 𝑙𝑙} =  (− 1)𝑚𝑚  𝑚𝑚!   𝑥𝑥𝛾𝛾 − 𝑘𝑘 + 1𝑦𝑦𝑧𝑧 − 𝑙𝑙𝑔𝑔𝑚𝑚(𝑧𝑧, 𝛾𝛾).     (4.27) 

 
(𝑇𝑇𝑘𝑘  +  1 )𝑚𝑚{𝑥𝑥− 𝑎𝑎 − 2𝑚𝑚 + 1 − 𝑘𝑘} =     (−1)𝑚𝑚 𝑚𝑚!  𝑥𝑥− 𝑎𝑎 − 𝑚𝑚 + 1 + 𝑘𝑘𝑅𝑅𝑚𝑚 �𝑎𝑎, 1

𝑥𝑥
� .                (4.28) 

 
 �𝑇𝑇𝑘𝑘𝑇𝑇𝑙𝑙𝑇𝑇𝑙𝑙𝑛𝑛  +  𝑇𝑇𝑝𝑝𝑇𝑇𝑞𝑞𝑇𝑇𝑠𝑠�

𝑚𝑚 �𝑥𝑥− 𝑘𝑘 + 1𝑦𝑦1 − 𝛾𝛾− 𝑚𝑚 − 𝑙𝑙𝑧𝑧− 𝑛𝑛 + 𝛽𝛽𝑢𝑢−
𝑚𝑚
2− 𝑝𝑝𝑣𝑣−

𝑚𝑚
2+

1
2− 𝑞𝑞𝑤𝑤𝛾𝛾 −𝛽𝛽− 𝑠𝑠� 

                     =  (𝑚𝑚!)22− 𝑚𝑚(1 −  𝜈𝜈 −  𝑚𝑚)𝑚𝑚𝑥𝑥− 𝑘𝑘 + 1 + 𝑚𝑚𝑦𝑦𝛾𝛾 − 𝑙𝑙 + 𝑚𝑚𝑧𝑧𝛽𝛽 + 𝑚𝑚 − 𝑛𝑛 

×  𝑢𝑢−
𝑚𝑚
2− 𝑝𝑝𝑣𝑣−

𝑚𝑚
2+

1
2− 𝑞𝑞𝑤𝑤𝛾𝛾− 𝛽𝛽 − 𝑠𝑠𝑅𝑅𝑛𝑛 �𝛽𝛽, 𝜈𝜈,�

𝑥𝑥 𝑦𝑦 𝑧𝑧
𝑢𝑢𝑢𝑢𝑢𝑢

� .                                                           (4.29) 

�𝑇𝑇𝑘𝑘𝑇𝑇𝑙𝑙𝑇𝑇𝑛𝑛  +  𝑇𝑇𝑝𝑝𝑇𝑇𝑞𝑞𝑇𝑇𝑠𝑠�
𝑚𝑚 �𝑥𝑥− 𝑘𝑘 + 1𝑦𝑦−𝑙𝑙 + 𝛼𝛼𝑧𝑧− 𝑛𝑛 +𝛽𝛽𝑢𝑢−

𝑚𝑚
2− 𝑝𝑝𝑣𝑣−

𝑚𝑚
2+

1
2− 𝑞𝑞𝑤𝑤1 − 𝛼𝛼 − 𝛽𝛽 − 𝑚𝑚 − 𝑠𝑠� 

                     =  (𝑚𝑚!)22− 𝑚𝑚(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝑥𝑥− 𝑘𝑘 + 1 + 𝑚𝑚𝑦𝑦−𝑙𝑙 + 𝛼𝛼+ 𝑚𝑚𝑧𝑧− 𝑛𝑛 +𝛽𝛽 + 𝑚𝑚 

×  𝑢𝑢�−
𝑚𝑚
2− 𝑝𝑝�𝑣𝑣�−

𝑚𝑚
2+

1
2− 𝑞𝑞�𝑤𝑤𝛾𝛾 − 𝛽𝛽 − 𝑠𝑠𝐺𝐺𝑛𝑛 �𝛼𝛼,𝛽𝛽 ,�𝑥𝑥 𝑦𝑦 𝑧𝑧

𝑢𝑢 𝑣𝑣 𝑤𝑤�                                                                     (4.30)  

 
 
For justification regarding the formulae we discussed above, some proofs are  elaborated 
here 
Proof of (4.1) 
 (𝑇𝑇𝑘𝑘 +  𝑇𝑇𝑙𝑙)𝑚𝑚  �𝑥𝑥− 𝑚𝑚 – 𝑘𝑘 𝑦𝑦𝑚𝑚 + 1 – 𝑙𝑙� =   ∑ (− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟  

r!
m
r=0     𝑇𝑇𝑘𝑘

𝑚𝑚 – 𝑟𝑟(𝑥𝑥− 𝑚𝑚 − 𝑘𝑘)    𝑇𝑇𝑙𝑙𝑟𝑟 �𝑦𝑦𝑚𝑚 + 1 – 𝑙𝑙�    

=  �
(− 𝑚𝑚)𝑟𝑟  (− 1)𝑟𝑟

𝑟𝑟!

𝑚𝑚

𝑟𝑟=0

 (–  𝑚𝑚)𝑚𝑚 – 𝑟𝑟 (𝑥𝑥− 𝑘𝑘 – 𝑟𝑟)  (𝑚𝑚 +  1)𝑟𝑟 (𝑦𝑦𝑚𝑚 + 1 – 𝑙𝑙 + 𝑟𝑟)   

  
                      =   (− 1)𝑚𝑚 𝑚𝑚!   𝑥𝑥− 𝑘𝑘 𝑦𝑦𝑚𝑚 + 1 – 𝑙𝑙  ∑ (− 𝑚𝑚)𝑟𝑟  (𝑚𝑚 + 1)𝑟𝑟

𝑟𝑟!  (1)𝑟𝑟
  𝑚𝑚

𝑟𝑟 = 0   �𝑦𝑦
𝑥𝑥
�
𝑟𝑟
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                      =   (− 1)𝑚𝑚   𝑚𝑚!   𝑥𝑥−𝑘𝑘 𝑦𝑦𝑚𝑚 + 1 – 𝑙𝑙 𝐹𝐹2 1 �−𝑚𝑚 𝑚𝑚 + 1;
                    1;

1−2𝑦𝑦
𝑥𝑥
� 

         =  (− 1)𝑚𝑚 𝑚𝑚!  𝑥𝑥− 𝑘𝑘 𝑦𝑦𝑚𝑚 + 1 – 𝑙𝑙 𝑃𝑃𝑚𝑚�1 −  2𝑦𝑦𝑥𝑥 �. 
Proof of (𝟒𝟒.𝟐𝟐) 
(1 +  𝑇𝑇𝑘𝑘)𝑚𝑚{𝑥𝑥− (𝑚𝑚 + 𝑘𝑘)+ 𝑟𝑟} = ∑ (− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟  

r!
 𝑚𝑚

𝑟𝑟 = 0  𝑇𝑇𝑘𝑘𝑟𝑟  �𝑥𝑥− (𝑚𝑚 + 𝑘𝑘)+ 𝑟𝑟�    

                                               = ∑ (− 𝑚𝑚)𝑟𝑟  (− 𝑚𝑚+1)𝑟𝑟 (− 1)𝑟𝑟  
r!

 𝑚𝑚
𝑟𝑟 = 0  𝑥𝑥− (𝑚𝑚 + 𝑘𝑘)+ 2 𝑟𝑟 

                                                =  (𝑥𝑥)− 𝑚𝑚 – 𝑘𝑘   𝐹𝐹2 1  �– 𝑚𝑚
2

−𝑚𝑚
2

+ 1
2

;
  −                     ;

− 4𝑥𝑥2� 

                                     =  (𝑥𝑥)− 𝑚𝑚 – 𝑘𝑘 𝐻𝐻𝑚𝑚 �
1
2𝑥𝑥
�. 

 
Proof of (𝟒𝟒.𝟕𝟕) 

(𝑇𝑇𝑘𝑘  +  𝑇𝑇𝑙𝑙)𝑚𝑚{𝑥𝑥− 𝑚𝑚 − 𝜈𝜈+12− 𝑘𝑘  𝑦𝑦𝑚𝑚 + 2𝜈𝜈 – 𝑙𝑙} 
                                                            =
∑ (− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟  

𝑟𝑟!
𝑚𝑚
𝑟𝑟 = 0     𝑇𝑇𝑘𝑘

𝑚𝑚 – 𝑟𝑟 �𝑥𝑥− 𝑚𝑚 – 𝜈𝜈 + 12 − 𝑘𝑘�    𝑇𝑇𝑙𝑙𝑟𝑟(𝑦𝑦𝑚𝑚 +  2𝜈𝜈  − 𝑙𝑙)  

                                                     =  �− 𝑚𝑚 –  𝜈𝜈 + 1
2
�
𝑚𝑚

  𝑥𝑥− 𝜈𝜈 +12− 𝑘𝑘 𝑦𝑦𝑚𝑚 + 2𝜈𝜈 – 𝑙𝑙 

× �
(− 𝑚𝑚)𝑟𝑟 (𝑚𝑚 +  2𝜈𝜈)𝑟𝑟   𝑦𝑦𝑟𝑟 

𝑟𝑟!  �𝜈𝜈 + 1
2�𝑟𝑟

𝑚𝑚

𝑟𝑟 = 0

  

                                                     =  
(− 1)𝑚𝑚 �𝜈𝜈+12�𝑚𝑚

 𝑚𝑚!

(2𝜈𝜈)𝑚𝑚
 𝑥𝑥− 𝜈𝜈 +12− 𝑘𝑘  𝑦𝑦𝑚𝑚 + 2𝜈𝜈− 𝑙𝑙 𝐶𝐶𝑚𝑚𝜈𝜈 �1 −  2𝑦𝑦𝑥𝑥 �.   

Proof of (𝟒𝟒.𝟖𝟖) 
(𝑇𝑇𝑘𝑘𝑇𝑇𝑙𝑙  −  𝑇𝑇𝑛𝑛)𝑚𝑚 {𝑥𝑥− 𝑚𝑚 − 𝑘𝑘  𝑦𝑦− 𝑚𝑚 − 𝑙𝑙𝑧𝑧𝑚𝑚 + 1 – 𝑛𝑛 }  

                                                    = ∑ (− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟  
𝑟𝑟!

{𝑚𝑚}
{𝑟𝑟 = 0}  𝑇𝑇𝑘𝑘

𝑚𝑚 – 𝑟𝑟 �𝑥𝑥− 𝑚𝑚 − 𝜈𝜈 + 12− 𝑘𝑘� 

× 𝑇𝑇𝑙𝑙𝑚𝑚 – 𝑟𝑟(𝑦𝑦− 𝑚𝑚 − 𝑙𝑙)  𝑇𝑇𝑛𝑛𝑟𝑟(𝑧𝑧𝑚𝑚 + 1 – 𝑛𝑛 ) 

                                                    =  (𝑚𝑚!)2    𝑧𝑧𝑚𝑚 + 1 – 𝑛𝑛

𝑥𝑥𝑘𝑘 
 ∑ (− 𝑚𝑚)𝑟𝑟 (𝑚𝑚 + 1)𝑟𝑟

𝑟𝑟!  (1)𝑟𝑟 (1)𝑟𝑟
𝑚𝑚
𝑟𝑟 = 0  � 𝑧𝑧

𝑥𝑥𝑥𝑥
� 

=  (𝑚𝑚!)2 𝑥𝑥− 𝑘𝑘 𝑦𝑦− 𝑙𝑙 𝑧𝑧𝑚𝑚 + 1 – 𝑛𝑛 𝑍𝑍𝑚𝑚𝜈𝜈 �
𝑧𝑧
𝑥𝑥𝑥𝑥�

. 

Proof of (𝟒𝟒.𝟗𝟗) 
�𝑇𝑇𝑝𝑝  𝑇𝑇𝑞𝑞  −  𝑇𝑇𝑘𝑘 𝑇𝑇𝑙𝑙�

𝑚𝑚 � 𝑢𝑢− 𝑚𝑚 – 𝑝𝑝 𝑣𝑣− 𝑝𝑝 − 𝑚𝑚 + 1 – 𝑞𝑞 𝑥𝑥𝑚𝑚 + 1 − 𝑘𝑘 𝑦𝑦𝜉𝜉− 𝑙𝑙�                                 

 = ∑ (− 𝑚𝑚)𝑟𝑟(− 1)𝑟𝑟

𝑟𝑟!
𝑚𝑚
𝑟𝑟 = 0   �𝑇𝑇𝑝𝑝

𝑚𝑚 – 𝑟𝑟  �𝑢𝑢− 𝑚𝑚 – 𝑝𝑝� 𝑇𝑇𝑞𝑞
𝑚𝑚 – 𝑟𝑟 �𝑣𝑣− 𝑝𝑝 − 𝑚𝑚 + 1 – 𝑞𝑞�  𝑇𝑇𝑘𝑘𝑟𝑟   �𝑥𝑥𝑚𝑚 + 1 – 𝑘𝑘�    𝑇𝑇𝑙𝑙𝑟𝑟 �𝑦𝑦𝜉𝜉 – 𝑙𝑙��  

 =  (− 𝑚𝑚)𝑚𝑚 (− 𝑝𝑝 −  𝑚𝑚 +  1)𝑚𝑚   ∑ (− 𝑚𝑚)𝑟𝑟 (𝑚𝑚 + 1)𝑟𝑟 (𝜉𝜉)𝑟𝑟
𝑟𝑟!  (1)𝑟𝑟  (𝑝𝑝)𝑟𝑟

𝑚𝑚
𝑟𝑟 = 0  × �𝑥𝑥𝑦𝑦

𝑢𝑢𝑢𝑢
� 𝑥𝑥

𝑚𝑚 + 1 – 𝑘𝑘 𝑦𝑦𝜉𝜉 – 𝑙𝑙

𝑢𝑢𝑝𝑝  𝑣𝑣𝑝𝑝 + 𝑞𝑞 – 1   

 =   𝑚𝑚!  (𝑝𝑝)𝑚𝑚 𝑥𝑥𝑚𝑚 + 1 – 𝑘𝑘 𝑦𝑦𝜉𝜉 – 𝑙𝑙

𝑢𝑢𝑝𝑝  𝑣𝑣𝑝𝑝 + 𝑞𝑞 – 1  𝐻𝐻𝑚𝑚�𝜉𝜉, 𝑝𝑝, 𝑥𝑥𝑥𝑥𝑢𝑢𝑢𝑢� . 

 
Proof of (𝟒𝟒.𝟏𝟏𝟏𝟏) 

(𝑇𝑇𝑘𝑘 +  𝑇𝑇𝑙𝑙)𝑚𝑚�𝑥𝑥𝛼𝛼− 𝑘𝑘 𝑦𝑦𝛽𝛽 – 𝑙𝑙�  = �
(− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟

𝑟𝑟!

𝑚𝑚

𝑟𝑟 = 0

  �𝑇𝑇𝑘𝑘𝑚𝑚 – 𝑟𝑟(𝑥𝑥𝛼𝛼 − 𝑘𝑘)  𝑇𝑇𝑙𝑙𝑟𝑟�𝑦𝑦𝛽𝛽 − 𝑙𝑙�� 

                                                     =  (𝛼𝛼)𝑚𝑚 𝑥𝑥𝛼𝛼 − 𝑘𝑘 + 𝑚𝑚 𝑦𝑦𝛽𝛽− 𝑙𝑙 ∑ (− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟

𝑟𝑟!  (1 − 𝛼𝛼 – 𝑚𝑚)𝑟𝑟
𝑚𝑚
𝑟𝑟 = 0 �𝑦𝑦

𝑥𝑥
�
𝑟𝑟
  

                                                               =   𝑚𝑚!  𝑥𝑥𝛼𝛼 – 𝑘𝑘   𝑦𝑦𝛽𝛽− 𝑙𝑙 𝑔𝑔𝑚𝑚
(𝛼𝛼,𝛽𝛽)(𝑥𝑥,𝑦𝑦) . 
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Proof of (𝟒𝟒.𝟐𝟐𝟐𝟐) 
(𝑇𝑇𝑘𝑘 +  𝑇𝑇𝑙𝑙)𝑚𝑚 �𝑥𝑥𝑠𝑠 + 1 – 𝑘𝑘 𝑦𝑦1 – 𝑙𝑙�                                               =

∑ (− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟

𝑟𝑟!
 𝑚𝑚

𝑟𝑟 = 0 �𝑇𝑇𝑘𝑘
𝑚𝑚 – 𝑟𝑟(𝑥𝑥𝑠𝑠 + 1 − 𝑘𝑘)   𝑇𝑇𝑙𝑙𝑟𝑟 �𝑦𝑦1 – 𝑙𝑙��   

 =  (𝑠𝑠 +  1)𝑚𝑚  𝑥𝑥𝑠𝑠 + 1 − 𝑘𝑘 + 𝑚𝑚 𝑦𝑦1 – 𝑙𝑙 ∑ (− 𝑚𝑚)𝑟𝑟 
𝑟𝑟! (− 𝑠𝑠 − 𝑚𝑚)𝑟𝑟 

𝑚𝑚
𝑟𝑟 = 0 �𝑦𝑦

𝑥𝑥
�
𝑟𝑟
    

  =   𝑚𝑚!   𝑥𝑥𝑠𝑠 +1 + 𝑚𝑚 – 𝑘𝑘 𝑦𝑦1 – 𝑙𝑙 𝑔𝑔𝑚𝑚
(𝑠𝑠) �𝑦𝑦

𝑥𝑥
�. 

Proof of (𝟒𝟒.𝟐𝟐𝟐𝟐) 
 (1 −  𝑇𝑇𝑙𝑙)𝑚𝑚 { 𝑦𝑦𝑥𝑥 – 𝑙𝑙} 
   = ∑ (− 𝑚𝑚)𝑟𝑟

𝑟𝑟!
𝑚𝑚
𝑟𝑟 = 0  � 𝑇𝑇𝑙𝑙𝑟𝑟  �𝑦𝑦𝑥𝑥 – 𝑙𝑙��     ( 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  2.3) 

    = ∑ (− 𝑚𝑚)𝑟𝑟
𝑟𝑟!

𝑚𝑚
𝑟𝑟 = 0 {(𝑥𝑥)𝑟𝑟 (𝑦𝑦𝑥𝑥 − 𝑙𝑙 + 𝑟𝑟)} 

    =  𝑦𝑦𝑥𝑥 − 𝑙𝑙 𝐹𝐹2 0 �–𝑚𝑚, 𝑥𝑥;
−          ;

𝑦𝑦� 

     =  𝑚𝑚!   𝑥𝑥−𝑚𝑚  𝑦𝑦𝑥𝑥 – 𝑙𝑙  𝜙𝜙𝑚𝑚 �
1
𝑦𝑦
�. 

Proof of (𝟒𝟒.𝟐𝟐𝟐𝟐) 
(𝑇𝑇𝑘𝑘 +  𝑇𝑇𝑙𝑙)𝑚𝑚{𝑥𝑥𝑁𝑁 − 𝑚𝑚 + 1 – 𝑘𝑘 𝑦𝑦− 𝑧𝑧 – 𝑙𝑙}                                                 =
∑ (− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟

𝑟𝑟!
𝑚𝑚
𝑟𝑟 = 0 �𝑇𝑇𝑘𝑘

𝑚𝑚 – 𝑟𝑟 �𝑥𝑥𝑁𝑁 − 𝑚𝑚 + 1 – 𝑘𝑘�  𝑇𝑇𝑙𝑙𝑟𝑟 �𝑦𝑦− 𝑧𝑧 – 𝑙𝑙��    

 =  (𝑠𝑠 +  1)𝑚𝑚 𝑥𝑥𝑠𝑠 + 1 − 𝑘𝑘 + 𝑚𝑚  𝑦𝑦1 – 𝑙𝑙 ∑ (− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟

𝑟𝑟! (− 𝑠𝑠 − 𝑚𝑚)𝑟𝑟
𝑚𝑚
𝑟𝑟 = 0  �𝑦𝑦

𝑥𝑥
�
𝑟𝑟
   

 =   𝑚𝑚!   𝑥𝑥𝑠𝑠 +1 + 𝑚𝑚 – 𝑘𝑘 𝑦𝑦1 – 𝑙𝑙 𝑔𝑔𝑚𝑚
(𝑠𝑠) �𝑦𝑦

𝑥𝑥
�. 

Proof of (𝟒𝟒.𝟐𝟐𝟐𝟐) 
 �1 − 1

𝑎𝑎𝑎𝑎
  𝑇𝑇𝑙𝑙�

𝑚𝑚
{𝑦𝑦− 𝑥𝑥 – 𝑙𝑙}  = ∑ (− 𝑚𝑚)𝑟𝑟

𝑟𝑟!
𝑚𝑚
𝑟𝑟 = 0  � 1

𝑎𝑎𝑎𝑎
�
𝑟𝑟

 𝑇𝑇𝑙𝑙𝑟𝑟(𝑦𝑦− 𝑥𝑥 − 𝑙𝑙)   

                                             = 1
(−𝑎𝑎)𝑚𝑚

 𝑦𝑦𝑥𝑥 − 𝑙𝑙  𝐹𝐹2 0 �–𝑚𝑚, −𝑥𝑥;
−          ;

1
𝑎𝑎� 

                                              =  1
(−𝑎𝑎)𝑚𝑚𝑦𝑦𝑥𝑥+𝑙𝑙

 𝐶𝐶𝑚𝑚𝑎𝑎 (𝑥𝑥). 

 
Proof of (𝟒𝟒.𝟐𝟐𝟐𝟐) 
 
 �𝑇𝑇𝑘𝑘 +  2𝑥𝑥

𝑦𝑦
 𝑇𝑇𝑙𝑙�

𝑚𝑚
�𝑥𝑥𝛾𝛾− 𝑚𝑚 + 1 − 𝑘𝑘 𝑦𝑦𝑧𝑧 – 𝑙𝑙�  

         = 𝑇𝑇𝑘𝑘
𝑚𝑚 – 𝑟𝑟(𝑥𝑥𝛾𝛾 − 𝑚𝑚 + 1 − 𝑘𝑘)   �2𝑥𝑥

𝑦𝑦
�
𝑟𝑟

  𝑇𝑇𝑙𝑙𝑟𝑟(𝑦𝑦𝑧𝑧 − 𝑙𝑙)  

               = ∑  
(− 𝑚𝑚){𝑟𝑟}  (−𝛾𝛾)𝑚𝑚

𝑟𝑟! (− 𝛾𝛾)𝑟𝑟
𝑚𝑚
𝑟𝑟 = 0   2𝑟𝑟 (𝑧𝑧)𝑟𝑟 𝑥𝑥𝛾𝛾+ 1 – 𝑘𝑘 𝑦𝑦𝑧𝑧 – 𝑙𝑙 

               = (− 1)𝑚𝑚(− 𝛾𝛾)𝑚𝑚  𝑥𝑥𝛾𝛾− 𝑘𝑘 + 1 𝑦𝑦𝑧𝑧 – 𝑙𝑙 𝐹𝐹2 1 �–𝑚𝑚, 𝑧𝑧;
𝛾𝛾          ; 2� 

                =  (− 1)𝑚𝑚  (− 𝛾𝛾)𝑚𝑚 𝑥𝑥�𝛾𝛾 – 𝑘𝑘 + 1� 𝑦𝑦𝑧𝑧 – 𝑙𝑙 𝑔𝑔𝑚𝑚(𝑧𝑧, 𝛾𝛾). 
 
Proof of (𝟒𝟒.𝟐𝟐𝟐𝟐) 

(𝑇𝑇𝑘𝑘 +  1 )𝑚𝑚 �𝑥𝑥{− 𝑎𝑎 − 2𝑚𝑚 + 1 – 𝑘𝑘}� = �
(− 𝑚𝑚)𝑟𝑟 (− 1)𝑟𝑟

𝑟𝑟!

𝑚𝑚

𝑟𝑟 = 0

 {𝑇𝑇𝑘𝑘𝑚𝑚 – 𝑟𝑟(𝑥𝑥− 𝑎𝑎 − 2𝑚𝑚 + 1 – 𝑘𝑘)}    

                                                                       =  (−1)𝑚𝑚 𝑚𝑚!  𝑥𝑥− 𝑎𝑎 − 𝑚𝑚 + 1 + 𝑘𝑘  𝑅𝑅𝑚𝑚(𝑎𝑎, 1/𝑥𝑥). 
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