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Abstract: In this paper, we analyze and study the operator representations of various polynomial
sets using a new operator which was introduced by H.B. Mittal [10]. We also look forward in the
literature in which M.A. Khan and A.K. Shukla [8] designed a new technique by which the finite
series representation of binomial and trinomial partial differential operators can be easily grasped
by the learners.
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1. INTRODUCTION AND PRELIMINARIES

In 1964, W.A. AL-Salam [15] defined an operator and studied the various aspect of the
operator

d
0 =x(1+xD) D:a. (1.1)

Al-Salam used his operator in a graceful and stylish manner to derive some familiar formulae
including classical orthogonal polynomials. Al-Salam also established an operator representation
for the Laguerre, Jacobi, Legendre and other well - known polynomials described in the
literature.

In 1971, H.B. Mittal [10] designed an operator which is generalized formof AL-Salam operator

given by underneath relation

d
Tk = X(k + X'D), D= a (12)



In 2010, M.A. Khan and K.S. Nisar [9] established an operator representations of Cesaro,
Meixner, Sylvester, Shively's psuedo Laguerre, Jacobi, Hermite, Legendre, Gegenbauer,
Ultraspherical, Bateman's Z,, (x), Bateman's generalization of Z,,(x), Rice's, Sister Celine's,
Bessel, Tchebycheff, Konhauser, Lagrange and Bedient polynomials by using the AL-Salam
operator.

The aim of this write up is to obtain operator representations of various polynomial sets by using
T}, operator [10] calculated by the technique used by M.A. Khan and A.K.Shukla [8].The result
designed by us is the generalized form of the results obtained by M. A. Khan and K.S. Nisar [9].

2. The definition, notation and results used

In obtaining the operational representation of various polynomial sets by means of
Tyoperator introduced by H.B. Mittal [10]

Ty = x(k +xD) , (2.1)
which yields

T/ {x%} = (@ + k),x%*k, (2.2)
where k is an integer, m a non-negative integer and ais an arbitrary.This operator is essentially
that of Chak [3] and is closely related to these employed by Carlitz [4] and Gould and Hopper

[7]. We find it useful in deriving operator representation of various polynomial sets.
The Leibnitz formula for the operator T is

T uv) = x Z (%) =T vy (7w, (2.3)

where T/ = x(1 + xD) is the AL-Salam operator. Eq.(2.3) can be easily verified by induction.
If Ti is the inverse of the operator T, then
k

i{xa} - D™ x—a-m (2.4)
" (¢ — k + 1Dy '
The Pochhammer symbol is defined as
@n = "5 (25)
(@m = ala+D(@+2)..(a+ (m—1)), ifm=12,.., (2.6)

for (2.5), it is easy to find that



D (@m .

(@m—k = (oo, 0<k<m, (2.7)
from [12], one obtains
_ (=DFm!

The hypergeometric function F(a, b; c; z) has been given in [12]

[oe)

F(a,b;c;z) = Z (a)m(b)mﬁ (2.9)

(©Om m!
m=0

it converges for |Z| < 1and the binomial expansion is given by

oo

-a _ amxm .
1-—x)"7%= el [x] < 1. (2.10)
m=0
In particular, the following results have been used
Te{x %} = (—a + k)x~**" (2.11)
Te{x™* ™} = (—a —m + k) x- 9" m*"r (2.12)

1+ a+m+ k),(-1)"
(2 +2m — a — k),

— (—a+ BDn(=D)" —a-r+m

= a+ a—k—m)rx . (2.14)

T}:n—r{x—1+a+m} -

x~ l1+a+2m-r (213)

(A C

The definition of the following polynomials are given in terms of hypergeometric function and
also their notations (see[1,5,12,13, 14]).

Legendre polynomials
It is denoted by the symbol B,,(x) and is defined as

-mm+1; 1-x
Pn(x) = oF |77 -

(2.15)

Hermite polynomial
It is denoted by the symbol H,,(x)and is defined as



H,(x)= F|2 =2 —. (2.16)

Laguerre polynomial
It is denoted by L(,ff) (x) and is defined as

(@) _ 1+ a)m -m,
L0 = "0k |y g ] (217)
Jacobi polynomial
It is denoted by P,ﬁl“’ﬁ ) (x)and is defined as
@p) . 1+ @m -m 1+a+f+m; 1—x
P, (x) = o -F 1+ a > .(2.18)

Ultraspherical polynomial
The special case of Jacobi polynomial i.e.,a = B is called Ultraspherical polynomial.
It is denoted by P“® (x) and is defined as
@a - A+ Om [—m 1+2a+ m; 1—X]
P () === 5Fy 14 — (2.19)

Gegenbauer polynomial
It is the generalization of Legendre polynomial denoted by Cy, (x).1t is defined as

C () =

V) -m 2v+m; 1-—x
TZl v_l_% : > (220)

Bateman's polynomial
It is denoted by Z,,,(x) and is defined as

-mm+1;
Zn@) = BT x| . 2.21)
Rice's polynomial
It is denoted by H,, (&, p,v) and is defined as
-mm+1,¢;
Ha@pn) = SR YT EE ] (222)
Cesaro polynomial
It is denoted by g,(,f) (x) and is defined as
©y - (5T m) -m, 1;
G (X)) = ( " oF; [—s T m x]. (2.23)

Meixner polynomial



It is denoted by M,,(x; B;c) and is defined as

—m, —x;

M, (x; B;¢) = LF B 1-— c‘l].

>0 0<c<1 x=01,2,..
Krawtochouk polynomial
It is denoted by K,,,(x; P; N)and is defined as

—m, —x;

Km(G P N) = oF1| |

P,
0<P<1,x=012,...,N

Hahn polynomial

It is denoted by Q,,(x; a; 8, N) and is defined as

—-x a+f+m+1;

—-m
QmC;a; B,N) = 3Fz[ -N 1+a

a,f>0mx =0,1,2, ...

Slyvester polynomial
It is denoted by ¢, (x)and is defined as

m -m Xx;

¢m(x) = % 2F [_ X_l].

)

Gottlieb polynomial
It is denoted by [,,,(x; A)and is defined as

L,(x; ) = e ™ F, [—m o e’l]

Charlier polynomial
It is denoted by C2(x)and is defined as

caw = CamoR[ " T 2
Mittag-Lefflerpolynomial
It is denoted by  g,,(z; y)and is defined as
=" -m -z
Im(zy) = ol 2F1[ y 2]-

)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)



Shively’s pseudo Laguerrepolynomial

It is denoted by R,,(a, x)and is defined as
(a)Zm -m, X,
i d

Rn(a,x) = (@) 2P| gam ;

(2.31)
Gegenbauer type generalized Bateman’s polynomial
It is the generalization of Bateman’s polynomial in the form of Gegenbauer denoted by

Z¥ (b, x). Itis defined as
-m m+ 2v; l
X

v —
Z.(b, x) = ZFZIH% L+ b, (2.32)

Generalized Bateman’s polynomial
It is denoted by Z,(,‘f"ﬁ) (b, x) and is defined as

(2.33)

Z,(,;I’B)(b,x)= ZFZ[—m, l1+a+pf+m; x]

1+a 1+5b;

Tchebicheff polynomial of first kind T,,,(x)
It is denoted by T,,(x) and is defined as

-11
7’7)

Tn(x) = GmT|PTEl
2/m

-m m; 1—x]

A (234)
2’ 2

Tchebicheff polynomial of the second kind U,,,(x)

It is denoted by U,,,(x)and is defined as

1 l,l - +2; —
Up (%) = (’(’;1)'13,532) = (m+1) 2F1[ "o =X (235)
2/m

S
Generalized Rice’s ponnomiaIH,(,f"B)(gf, p,V)
Khandekar [11] defined a Jacobi type generalization of Rice’s polynomial H,(,f"ﬁ)(f, p,V).
It is denoted by Hr(,f"ﬁ) (¢,p,v) and is defined as

: -m, 1l4+a+f+m &
HYP (& pv) = 5F [ 1+a p; v]. (2.36)
Bessel polynomialy,,(x)
It is denoted by y,,,(x)and is defined as
-m m+1;, -
I = R — (2.37)

Generalized Bessel polynomial y,,,(a, b, x)



It is denoted by y,,,(a, b, x)and is defined as

-m a—14+m;, -
Ym(@b,x) = 5Fy | i (2.38)
Lagrange polynomial
It is denoted by g,(,‘f’ﬁ)(x, y) and is defined as
@Ay yy= @m p [ =T B, (2.39)
gm ,y m 211_a_m; x| '
Sister-Celine’s polynomial
Sister Celine’s (Fasenmyer [6]) denoted her polynomial by the symbol
ay,a, ..., ap,
fm by, b, ..., b, x]
It is defined as
a,,az, ... Ay, -m,m+1,a,a; ...,a,
fm| byb, e by x] = pr2fasz 1,1 biby, .., by; x (2:40)
2
Konhauserbi-orthogonal polynomial
It is denoted by Z,(,‘l") (x; k) and is defined as
@iy — 1 (@B) (4 _ 2x
Z9 (x; k) = |Bl|£>I}nf{ S (1 B)} (2.41)
Bedient’spolynomial
Bedient [12] introduced Appell’s F,, F5 in his study. It is defined as
m m
oy @O"(B)m - o+Ly=8 5 1
Rm(ﬂ,)/, X) - m! 2F1 [ ;’ 21 _ ﬁ —m le' (242)
and
(@mBmEO™ o4 1-a m ;o1
[24 X - T, - - - -
. — WmP)m F 2’2 2’ —— 2.4

3. Operator Representations

By using the technique developed by M.A.Khan and A.K.Shukla [8] the following operator

representations of various polynomial sets have been obtained.

9 ] ] :
IfD, =—,D, = P and D, = —— , we consider

Ti(x) = x <k +x%)

n(y) =y (k + yaa—y)
and
T,(z) = Z(k + z%)

then the binomial expansion for (T, +T;)™ as



(Te+T)™ = 32 (T) TR 1] (3.1)

which is similar to the operator (D,+D,,)™ given by M.A. Khan and A.K. Shukla [8].

m
m -_—
(Dy+D,)™ = z (r)D}{L rpI,

r=0
where(") = #'_r)' and also writing the finite series on the right of (3.1) as
m
@errym = > (T)me T, (32)
r=0
if F(x,y) is a function of x and y then obtained the following from (3.1) and (3.2).
m
— _1 r
@ty Py = Y O e B y)  (33)
r=0 ’
=m),(=1" . .
(TeATY™ F(x,y) = Z— TTRGY) (34
Considerably, if F(x,y) = f(x)g(y) then we get the following results from (3.3) and (3.4)
(TATY™ F)gO) = B STy ()17 g(y) (3.5)
= o, & ’"M EED T fC T gB). (3.6

4. Main results

Now, by considering the particular values of f(x)and g(x) in (3.5)and(3.6), we obtain
the following partial binomial differential operator representations of the polynomials given
above

(T +TY™x= M~ kym+1-1} = (—1)™m! x~kym+1-1p (1 -2). (4.1)
(4T )™{x~ M RFrY = ymm kg (L), (4.2)
(T + DMx=a=k=m) = (—D)mm! x~@ kLD (1), (4.3)
or
1\" m!
— —a-k,m+1-1y _ () (1
(1 + Tk) (x @ kx )= T ). (4.4)
(Tk+Tl)m {x— a-m— kya +f+m+1- l}
— (_1)m m! x—a’—kya +f+m+1- lprga'ﬁ)(l _ 273/) (45)
(Tk+Tl)m {x— a-m-— kyZa +m+1- l}
= ()Mt xmeTkyrerm s Lpie® (1 —2), (4.6)
(Ti + TY™x™ M7V yme2v-iy
(-D™(v +2 m! 1
((ZV);)m x~ v+o—k m+2v le( zy) _ (4_7)
(Tle _ n)m {x—m—ky—m—lzm+1—n}
= (m)2x—ky-lgm+i-ng ( z ) (4.8)
Xy



(Tqu — Tle)m{u—m—pv—p—m+1—qu+1—kyf—l }
(p)mxm+ 1—ky§—l

— xy
= m! upPpp+a-1 Hm (f; b, E) . (49)

(Tle _ n)m{x—m—v+%— ky—l—b—mZm+2v—n}
(v +3) @+ b)pzm*ze
= T zy (b, 2) (4.10)
L BYEY: yx

(Tle — n)m{x—m—a—k y—l—b—mzl+a+ B+m—n}

_ (1+a)m(1+b)mzl+a+ p+m-n

cariy Tl z%P (b, 2). (4.11)
(T,T, — Tle)m{ —m-p-ay-p-m+i-q xm+1+a+ﬁ—kyf—l}
—m! (p)mxluffllz @R (g, p, (4.12)
(1 + T)™Mxm* 174} = am 17k y,(2x) (4.13)
(1 + 7}k>m{x”“”m‘k} = xa-1tm=-ky (a,b,_?x). (4.14)
(T + TY™Mal/2-m=kym=1} = (= )m (%)mxl/z"‘ym‘le(l - ). (415)

(Tk+ Tl)m{x—i—m—kym+2—l} — (_ 1)m (%) x—%—kym+2_lUm(1 _
m

2y
7)_ (4.16)
m
(T, Ty, - Ty = Tl Ty Ty )
1
—k-mqy5-l-m_—bi—li-m+1_—by—lp—-m+1 —bg—lg-m+1
{x y2 21 U, Yq
m+1-n,,01~N1  G~np _ Ap~Np
z wy w, .
1
— m k.1
={m! ~0™9(3) Bmb2)m - (b), x~y?
m
—by—lLi+1 _—bi—l1-m+1 —bg=lgt1l a;-ny m+1-n,,, 02N ap~—Mp
v, v, U, wy VA w, W,
alr ---Jap r ZW1W2"‘ wW.
p
X fo| by by, Tvvp D ] (4.17)
Y U1V3 " Vg
where
Ay, s Ap 5 ZWyWy - Wp] F [—n,n+1,a1, ey Qp ]
L —| = x |
by, ....bg;  xyvv, - Vg p+2 1,1/2, by, ..., by;
A\ —ak—1_m_ll+1 —¢7;<—2_m_12+1 _“k_k—m—lk+1
Tllle oes le'_ (E) yl yz ees yk

(a + Dgm m! a( X
= ; k). (4.18)
KA1 + @om " \Y1Y2 e Vi




(Ty + T)™x* " ky*=1} = m! x“‘kyﬁ‘lg,(,‘f'm(x, y). (4.19)

(T + T)™xST1-kyl=1} = ) xs+1+m- kyl—lgr(ri)( ) (4.20)

9 = T = mxmyt g (). (421)
(Tk+ Tl)m{xN—m+1—ky—z—l}
= (= 1)™(= N),xN+1-ky=z-lg (z, IN). (4.22)
(Tk + Tl)m{x—ﬁ—m+1—ky—z—l}
= (= )My BH1-ky-z-lpy (z,,[?,xf—y). (4.23)
(TpTl _ ﬂTan)m{uN—m+1—pya—lv—x—qza+ﬁ+m+1—n}
= (-N)(a+ D, ulN*1-Py-a-ly-x-aza+f+m+i-ng (x o B, N).(4.24)
(Tl y(1 - )Tn> {yTm-1z7*" "} = (=)™ m! e™y~lz=*"" (x; 1). (4.25)
(1~ LT)m R e 1) (+26)
ay : (_ a)myx+l "

m
(T + 21)" G mmrimkyz =l = (D™ om0 TR yE g (). (427)

(T, + 1) {x-a-2m+1-k} = (_1)mp| x-a-m+i+tkp (a’%)' (4.28)
m m 1
(TleTln + TquTs)m {x_k+1_’)/1_V_m_lZ_n+Bu_7_pv_7+5_qu_ﬁ—5}
= (m!)Zz—m(l S - m)mx—k+1+myy—l+mzﬁ+m—n

m_, m.1 XYyZ
x u"z Py z 27 9wY-B-SR_( B,v, . 429
u v w nl B,V " ( )

m, 1

(TleTn + TquTs)m {x—k+1y—l+0(Z—n+ﬁu—%—pv—7+§—qwl_a_[_g_m_s}
= (m!)Zz—m(a+'B)mx—k+1+my—l+a+mz—n+ﬁ+m
m

« w7 P2 q}wv—ﬁ—sgn<a,ﬁ, x”) (4.30)

uvw

10

For justification regarding the formulae we discussed above, some proofs are elaborated

here
Proof of (4.1)

(Tk+ Tl)m {x—m—kym+1—l}: ;nzo(—m)r(—l)r T}:n—r(x_m_k) Tzr (ym+1—l)

r!

= S EEED ey GE) (m o+ 1), )

(-m)y (m+ 1), (X)r

— _ m 1 -k.m+1-1 m
(—1D)™mm! x~*y ™o (D "
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(_ l)m m! x—kym+1—l 2F1 -m m+11.; 1_x2y]

= (-D"ml x"kym*i-tp (1 - 2).

Proof of (4.2)
(1 + T)™x~ mHrry =y
= Z?:o
= (x)"m"k _F l‘? _?+Ef —4le

= GO ()

CmrCU gy (-t st
Cmy CmiD GO mezr

r!

)

Proof of (4.7)
1
(T + T™x™ ™7Vl ym*2v-iy

r 1
Z;nzo(—m)rrf—l) T}:n—r(x—m—v+5—k) TV (ym+ 2v -1y
v4i—k m+2v-1

=(—m—v+%)m x 'z "y

1
r ("+2)r

(_1)m(v+5) m —v4i-k m+2v l rv 2

— m y
@2V)m x 2 C (1 )
Proof of (4.8)
(Tle _ n)m{x—m—ky—m—lzm+1—n}

_ vim} (—m)y (=17 m-r -m - +l—k
= pim [ EmrCDT g (mmevik)

lem—r(y—m—l) T;{(Zm+1—n)
(mh2 zZm*+1 " g (=m)y (m+1), (i)
Xy

- xk =0 (), ()
VA

— N2 x— k41 m+1—nZv< )
(mh*x~"*y ‘'z m xy

Proof of (4.9)
(Tp Tq _ Tk Tl)m{u—m—pv—p—m+1—qu+1—ky$—l}
=Z;n=0(—m);!(—1)r {T;n-r (u—m—p)Tqm‘r(v—p—m+1—q) A (xm+1—k) Tlr(yf—l)}
_ (=m)y (m+ 1)y ) xmri-kyg-l
= M (Cp = m A+ Do 20— (E)W
m+1- k

_ m ®)m x m(f p,

uP ppt+tq-1

Proof of (4.19)
r (=1 _
(Tk + Tl)m{xa ky,B l} Z ( m) ( ) {Tm r(xa k) Tr(yﬁ l)}

’r_

m)r (D"
= (@pxekrmypotpn SO ()

r' (1—-a-m)y \x

= ml x® K yP-lglP(x,yy.



Proof of (4.20)
(Tk+ Tl)m{xs+1—ky1—l}
— r -1 T _ _ _
:‘n=0( m)y (- 1) {T]:n T(xs+1 k) Tlr(yl l)}

r!
_ B (- m), r
— (S + 1)m xs+1 k+my1 l 7‘mzo m (Z)

ri(—s—m)y \x
s+l1+m-k (5)().

= m! x y gm

Proof of (4.21)
1 - T)m{yx‘l}
=Xre m)r {Tlr (yx‘l)} (using 2.3)
=zr= ’””«x)r (y*=1*n)
=yl R [__m’ xf y]
= ml x—m yx—l ¢m (i)
Proof of (4.22)
(Tk-l- Tl)m{xN—m+1—ky—z—l}
;nzo(_m)r(_l) {len‘r(xN—m+1—k) Tlr (y—z—l)}

r!

- - —m)r (=" (y\"
— (S + 1)mxs+1 k+m yl l ;nz (;)

0 r!(—s—-m),

= ml xStiHm-ki- gr(rsi)( )

Proof of (4. 26)

(-2 n) oy =S () oY
=(_§)m R A
=~ Gm(X).

( m yx+l

Proof of (4.27)

(Tk_l_ 279‘ Tl)m{xy—m+1—kyz—l}
:len—r(xy—m+1—k) (Z_x)r T (y? 1)
y

(=m)gy (=)
zzm_ r'{(}y) m Zr(z) xY+1- kyz l

= (_ 1)m(_ )’)m x)/—k+1yz—l 2F1 [—ym, Z.; 2]
= (D™ Pmx Yy g 2y).
Proof of (4.28)
(T + 1)™ {x{—a—2m+1-k}} = Z = m);!(_ D {Tgn—r(x—a—2m+1—k)}

— (_1)mm| x—a—m+1+k Rm(a,l/x).
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