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Abstract: In this paper, we introduce a new operator in order to derive some properties of 

homogeneous symmetric functions. By making use of the proposed operator, we give some new 

generating functions for  k  -Fibonacci and  k  -Pell numbers at negative indices and product of 

numbers at negative indices and Chebychev polynomials of first and second kind. 
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1. INTRODUCTION AND PRELIMINARIES  

   

The well-known Fibonacci (and Lucas) sequence is one of the sequences of positive integers that 

have been studied over several years. Many authors are dedicated to study this sequence, such as 

the work of Hoggatt, in [11] and Vorobiov, in [15], among others. Fibonacci numbers  nF   are 

defined by the recurrence relation 
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   Pell numbers  nP   are defined by the recurrence relation 
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On the other hand, many kinds of generalizations of Fibonacci numbers have been presented in 

the literature. In particular, a generalization is the  k  -Fibonacci Numbers. For any positive real 

number  k  , the  k  -Fibonacci sequence, say  
, N( )n k nF 

 , is defined recurrently by [13]  
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 In [12],  k  -Fibonacci numbers were found by studying the recursive application of two 

geometrical transformations used in the four-triangle longest-edge (4TLE) partition. These 

numbers have been studied in several papers; see [12, 13]. 

For any positive real number  k  , the  k  -Pell Numbers, say  
, N( )n k nP 

 , is defined recurrently 

by [8]  
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 In this contribution, we shall define a new useful operator denoted by  1

1 2

k

p p    for which we can 

formulate, extend and prove new results based on our previous ones [1, 2, 6]. In order to 

determine generating functions of the product of  k  -Fibonacci and  k  -Pell numbers at 

negative indices and Chebychev polynomials of first and second kind, we combine between our 

indicated past techniques and these presented polishing approaches. 

 In order to render the work self-contained we give the necessary preliminaries tools; we recall 

some definitions and results 

 Definition 1.1. [6] Let  B   and  P   be any two alphabets. We define  ( )nS B P   by the 

following form 
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with the condition  ( ) 0nS B P   for  0.n    

 Equation (1.2) can be rewritten in the following form  
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 Definition 1.2. [4] Given a function  f   on  n  , the divided difference operator is defined as 

follows 
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 Definition 1.3.  The symmetrizing operator  
1 2

k

e e   is defined by  
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 Proposition 1.1.  [5] Let  1 2{ , }P p p   an alphabet, we define the operator  
1 2

k

p p  as follows 
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 Proposition 1.2.  [1] The relations 
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2. THEOREM AND PROOF  
 

In our main result, we will combine all these results in a unified way such that they can be 

considered as a special case of the following Theorem. 

Theorem 2.1.  Given two alphabets   1 2,P p p   and   1 2, ,..., ,nB b b b   we have  
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which is the right-hand side of (2.1). On the other part, since 
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  This completes the proof. 

 

3. ON THE SYMMETRIC FUNCTIONS  
 

 We now derive new generating functions of the products of some well-known numbers and 

polynomials. Indeed, we consider Theorem 2.1 in order to derive  k  -Fibonacci and  k  -Pell 

numbers at negative indices and Tchebychev polynomials of first and second kind and the 

symmetric functions for  0k   . 

Theorem 3.1. [4] Given two alphabets   1 2,P p p   and   1 2 3, , ,B b b b   we have 
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Case 1: Replacing  2p   by  2( )p   and assuming that  1 2 1 21,p p p p k     in Theorem 3.1, we 

have the following theorem 

 Theorem 3.2. We have the following a new generating function of both  k  -Fibonacci numbers 

at negative indices and symmetric functions in several variables as  
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which representing a new generating function of Fibonacci numbers at negative indices and 

symmetric functions in several variable .   

Setting  3 0b    and replacing  2b   by  2( )b   in (3.2), and assuming  1 2b b    k  ;  1 2 1b b  , we 

deduce the following theorems. 

Theorem 3.3.  For  Nn  , the new generating function of the product of  k  -Fibonacci 

numbers and  k  -Fibonacci numbers at negative indices is given by  
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 Put  1k    in the relationship (3.3) we have  
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which representing a new generating function of the product of Fibonacci numbers and 

Fibonacci numbers at negative indices. 

Theorem 3.4. For  Nn  , the new generating function of the product of  k  -Fibonacci 

numbers at negative indices is given by  
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Case 2: Replacing  2p   by  2( )p   and assuming that  1 2 1 2, 2p p k p p     in Theorem 3.1, 

we have the following. 

 Theorem 3.5. We have the following a new generating function of both  k  -Pell numbers at 

negative indices and symmetric functions in several variables as  
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which representing a new generating function of Pell numbers at negative indices and symmetric 

functions in several variables. 

Setting  3 0b    and replacing  2b   by  2( )b   in (3.4), and assuming  1 2b b    2  ;  1 2b b k , we 

deduce the following theorem. 

Theorem 3.6. For  Nn  , the new generating function of the product of  k  -Pell numbers and  

k  -Fibonacci numbers at negative indices is given by  
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 Put  1k    in the relationship (3.5) we have  
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which representing a new generating function of the product of Pell numbers and Pell numbers at 

negative indices. 

Theorem 3.7. For  Nn  , the new generating function of the product of  k  -Pell numbers is 

given by  
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Case 3: Replacing  2p   by  1,p   and assuming that  1 2 1 21,p p p p x     in Theorem 3.1, we 

have the following a new generating function Fibonacci polynomials of second kind and the 

symmetric functions in several variables, as follows  
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Setting  3 0b    and replacing  2b   by  2( )b   in (3.6), and assuming  1 2b b    k  ;  1 2 1b b   

and  1 2b b    2  ;  1 2b b k   respectively, we deduce the following theorems. 

Theorem 3.8. The generating function of the product of Fibonacci polynomials and k-Fibonacci 

numbers as 
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Theorem 3.9. The new generating function of the product of Fibonacci polynomials and k-Pell 

numbers as  
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. 

4. CONCLUSIONS 

In this paper, a new theorem has been proposed in order to determine the generating functions. 

The proposed theorem is based on the symmetric fonctions.The obtained results agree with the 

results obtained in some previous works. 
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